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Abstract

Several methods have been proposed in the literature for forecasting daily Value-
at-Risk (VaR) and Expected Shortfall (ES), with tail risk models generally classi-
fied into three main categories: parametric, semi-parametric, and non-parametric.
However, given the various sources of uncertainty associated with the data, market
conditions, estimation methods, and exogenous variables that can have a significant
impact on the dynamics of tail risk, there is no single model that consistently outper-
forms all the others. To mitigate the impact of model misspecification and improve
the predictive accuracy of individual models, we investigate the use of two forecast
combination approaches. In the proposed approaches, the weight of the most accu-
rate set of predictors is determined adaptively according to strictly consistent loss
functions for VaR and ES employed in the Model Confidence Set procedures. Our
findings reveal that combinations of VaR and ES forecasts result in higher predictive
accuracy over a wide range of individual competitors.

Keywords: Value-at-Risk, Expected Shortfall, Model Confidence Set, Forecast Combi-
nations

1. Introduction

Value at Risk (VaR) and Expected Shortfall (ES) are widely accepted tail risk measures used
by financial institutions to calculate the minimum capital requirements needed to protect their
investments from adverse market conditions and to hedge against unexpected losses, as promoted
by the Basel Capital Accord. Although a large number of models have been proposed for the
generation of accurate VaR and ES forecasts, they can be mainly classified into parametric, non-
parametric and semi-parametric approaches. Parametric models, such as GARCH-type models,
rely heavily on assumptions about return distribution, which can significantly affect forecast
accuracy. On the other hand, non-parametric techniques, like historical simulation, are widely
used because of their ease of implementation and the absence of distributional assumptions.
Finally, a framework for estimating VaR and ES that does not rely on the estimation of volatility
is provided by the use of semi-parametric methods (Engle and Manganelli, 2004; Gerlach and
Wang, 2020; Taylor, 2008a, 2019).

There is no evidence in the tail risk forecasting literature to support some specific models or
approaches to forecast VaR and ES. This uncertainty arises from several sources, including data
dynamics, parameter estimation, specification of measurement equations as well as the impact of
exogenous factors. In this framework, combining forecasts allows controlling model uncertainty
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and exploiting the information from each individual model (Clemen, 1989; Timmermann, 2006;
Wang et al., 2022).

Since the seminal research of Bates and Granger (1969), combining forecasts has received
considerable attention in a variety of fields, with empirical evidence highlighting the benefits
of reducing the risk of selecting a single predictor. For example, several strategies have been
proposed to combine volatility forecasts in order to determine the optimal set of predictors and
reduce model uncertainty in both univariate (Amendola and Storti, 2008; Becker and Clements,
2008; Ma et al., 2018) and multivariate (Amendola et al., 2020; Amendola and Storti, 2015;
Caldeira et al., 2017) frameworks. Furthermore, several studies provide empirical evidence to
support the use of forecast combination in risk assessment, as the comparison of forecasts over
the forecast horizon might not always lead to a single optimal model or approach (Komunjer,
2013; Nieto and Ruiz, 2016). In this direction, strategies for the combination of VaR forecasts
have been proposed, for instance, in Halbleib and Pohlmeier (2012), Jeon and Taylor (Jeon and
Taylor) and Bayer (2018), among others. Finally, Taylor (2020a) and Storti and Wang (2023)
developed approaches for for jointly combining VaR and ES forecasts.

The aim of this paper is to evaluate the merits of combining forecasts to improve the accuracy
of VaR and ES obtained from individual models. The ability to mitigate model misspecification
and synthesize multiple sources of information allows for different combination strategies, adap-
tively weighting the most accurate set of VaR and ES forecasts. For the selection of models to be
included in the combination, we refer to the Model Confidence Set (MCS, Hansen et al., 2011).
Specifically, forecast combinations are determined by minimizing strictly consistent joint VaR
and ES loss functions of the class of Fissler and Ziegel (2016) according to different weighting
schemes. It is also worth noting that the set of models included in the combination changes
dynamically over time without having to estimate parameters.

The performance of the proposed approach is assessed by a comprehensive backtesting analy-
sis according to the Unconditional Coverage (UC) test (Kupiec, 1995), the Conditional Coverage
(CC) test (Christoffersen, 1998) and the Dynamic Quantile (DQ) test (Engle and Manganelli,
2004). On the other hand, the Regression-Based Expected Shortfall Backtesting (BD) of Bayer
and Dimitriadis (2022) is used to test the validity of ES forecasts. Finally, the MCS is employed
to assess the statistical significance of differences among competing models.

The proposed approach is applied to combine VaR and ES forecasts of a wide range of tail
risk models for the S&P500 Index. The empirical results show that the proposed combined
specifications provide evidence of correct model specification under the backtesting procedures
while entering the 75% MCS.

The rest of the paper is organized as follows. Section 2. reviews VaR and ES measures,
Section 3. illustrates the implemented methodology and the proposed combination strategies.
Section 4. is focuses on the empirical application. Finally, Section 5. provides concluding
remarks.

2. Tail risk measures

VaR and ES are the most popular benchmarks from a risk management perspective (Christof-
fersen and Gonçalves, 2005; Sarykalin et al., 2008).

As a conditional quantile in the lower tail of the distribution of the return on a portfolio,
VaR has become a popular measure of financial market risk used to meet regulatory and internal
risk management requirements. VaR is a measure of the maximum potential loss on a portfolio
of assets over a given time horizon and with a specified level of confidence. Formally,

Pr(rt < V aRt(τ)|Ft−1) = τ , (1)

or equivalently
V aRt(τ) = F−1

t,r (τ) , (2)



where rt is the one-period log-return from time t − 1 to t, τ ∈ (0, 1) is the quantile level, Ft−1

is the information set at time t− 1 and F−1
t,r (τ) is the Cumulative Distribution Function (CDF)

of rt conditional on Ft−1.
However, VaR has been criticized for failing to meet the criteria of a consistent risk metric

(Artzner et al., 1999) and for its limitations in providing insight into potential outliers beyond
the quantile.

The ES has been found to be a coherent measure of risk (Acerbi and Tasche, 2002) and
is therefore suggested as an alternative for VaR in risk management applications. The ES is
defined as the conditional expectation of returns exceeding the corresponding VaR threshold,
namely

ESt(τ) = E [rt|rt < V aRt(τ),Ft−1] . (3)

Despite its appropriate theoretical properties, ES is not “elicitable” (Gneiting, 2011). This
means that the ES cannot uniquely minimize the expectation of at least one loss or scoring
function. However, Fissler and Ziegel (2016) found that VaR and ES are jointly elicitable,
leading to a set of strictly consistent scoring functions that can be used for jointly evaluating
the VaR and ES forecasts.

The general Fissler and Ziegel (2016) class of loss functions is defined as

FZ(V aRt, ESt|rt; τ) ={I(rt ≤ V aRt)− τ}G1(V aRt)− I(rt ≤ V aRt)G1(rt) +G2(ESt){
ESt − V aRt + I(rt ≤ V aRt)

V aRt − rt
τ

}
− ζ2(ESt) + a(rt), (4)

where G1, G2, ζ2 and a are functions satisfying a number of conditions, including G2 = ζ
′
2, G1 is

increasing and ζ2 is increasing and convex. Choosing G1 = 0, G2(x) = −1/x, ζ2(x) = − log(−x),
and setting a(rt) = 0, leads to the zero-degree homogeneous loss (FZ0) in Patton et al. (2019).
Similarly, setting G1 = 0, G2(x) = −1/x, ζ2(x) = − log(−x), a(rt) = 1 − log(1 − α), leads to
AL score in Taylor (2020b).

3. Methodology

In this work, two different combined predictors for VaR and ES are proposed. All the
combined predictors are based on the models which, dynamically, enter the Set of Superior
Models (SSM) according to the MCS procedure. We defined as training MCS the procedure
used to find the best models in the so-called training or in-sample period. The loss used in the
training MCS belongs to the class of FZ. More in detail, the loss is that of Patton et al. (2019)
labelled as FZ0. Formally:

FZ0(V aRi,t(τ), ESi,t(τ), ri,t) =
1

τESt(τ)
1(ri,t≤V aRi,t(τ))(ri,t − V aRi,t(τ))+

V aRi,t(τ)

ESi,t(τ)
+ log(−ESi,t(τ))− 1, (5)

where τ is the coverage level chosen, ri,t is the log-returns for day i of the low-frequency period
t and 1(·) is an indicator function.

The chosen set of candidate models covers a wide range of frequently used parametric, semi-
parametric and non-parametric techniques, as well as methods based on intraday data and mixed
frequency variables. Table 1 reports the set of candidate models.

In this work, we propose two different combined predictors: MCS-Comb and WL-MCS-
Comb. In particular:



Table 1: Candidate models
Model Functional form Err. Distr.

GARCH–N, GARCH–t (Bollerslev, 1986)
ri,t|Fi−1,t =

√
hi,tηi,t ηi,t

i.i.d∼ N (0, 1) , ηi,t
i.i.d∼ tν

hi,t = ω + αr2i−1,t + βhi−1,t

GJR–N, GJR–t (Glosten et al., 1993)
ri,t|Fi−1,t =

√
hi,tηi,t ηi,t

i.i.d∼ N (0, 1) , ηi,t
i.i.d∼ tν

hi,t = ω +
(
α + γ1(ri−1,t<0)

)
r2i−1,t + βhi−1,t

ri,t|Fi−1,t =
√
πt × ξi,tηi,t ηi,t

i.i.d∼ N (0, 1) , ηi,t
i.i.d∼ tν

GM–N, GM–t (Engle et al., 2013) ξi,t = (1− α − β − γ/2) +
(
α + γ · 1(ri−1,t<0)

) r2i−1,t

πt
+ βξi−1,t

πt = exp
{
m+ ζ

∑K
k=1 δk(ω)MVt−k

}

R–GARCH–N, R–GARCH–t (Hansen et al., 2012)
ri,t|Fi−1,t =

√
hi,tηi,t ηi,t

i.i.d∼ N (0, 1) , ηi,t
i.i.d∼ tν

hi,t = const+ βhi−1,t + αxi−1,t

xi,t = constx + δhi,t + τ1ηi,t + τ2
(
η2i,t − 1

)
+ σuui,t

HS (Hendricks, 1996)
V aRi,t(τ) = Qrw

i,t
(τ)

rw
i,t = (ri−w,t, ri−w+1,t, . . . , ri−1,t)

CAViaR-SAV (Engle and Manganelli, 2004) V aRi,t(τ) = β0 + β1V aRi−1,t(τ) + β2|ri−1,t|

CAViaR-AS (Engle and Manganelli, 2004) V aRi,t(τ) = β0 + β1V aRi−1,t(τ) + (β21(ri−1,t>0) + β31(ri−1,t<0))|ri−1,t|

CAViaR-IG (Engle and Manganelli, 2004) V aRi,t(τ) = −
√
β0 + β1V aR2

i−1,t(τ) + β2r2i−1,t

CAViaR-X (Gerlach and Wang, 2020) V aRi,t(τ) = β0 + β1V aRi−1,t(τ) + β2xi−1,t

ri,t|Fi−1,t =
√
hi,tηi,t ηi,t

i.i.d∼ (0, 1)
MF-X (Candila et al., 2023)

√
hi,t = (β0 + θ|WSt−1|+ β1|ri−1,t|+ . . .+ βq|ri−q,t|+ βX |Xi−1,t|)

WSt−1 =
∑K

k=1 δk(ω)MVt−k

� MCS-Comb: equally weighting all the V aR’s and ES’s obtained from the models entering
the SSM of the training MCS, using the (unweighted) FZ0;

� WL-MCS-Comb: equally weighting all the V aR’s and ES’s obtained from the models
entering the SSM of the training MCS, using the weighted FZ0.

The weighted FZ0 adopted in the training MCS weights differently remote and recent ob-
servations. According to Taylor (2008b), the idea is that recent observations should have more
weight with respect to remote observations. We adopt the same exponentially weighted approach
of the RiskMetrics (Riskmetrics, 1996) model to weight differently the observations.

4. Empirical analysis

The empirical analysis uses daily data on S&P 500 index collected from the Oxford-Man
Institute’s Realized Library. The full sample covers the period from January 14, 2013 to May
31, 2022, for T = 2350 daily observations. High-frequency variables are the realized volatil-
ity (Andersen et al., 2001) at 5 minutes and the realized bipower variation (Barndorff-Nielsen
and Shephard, 2004) with subsampling. The low-frequency variable is the Economic Policy
Uncertainty (EPU, Baker et al., 2016), observed monthly.

Let M be the set of candidate models, Tin the length of the rolling period, lstep the number
of static one-step-ahead forecasts generated by each candidate model, T the sample size, and
nstep = (T − Tin)/lstep the number of steps employed in the algorithm. The algorithm for
obtaining the combined predictors is as follows:

1. Estimate all the candidate models over the window including observations from the period
i = 1 + j to i = Tin + j. Conditionally on the estimated parameters, generate for the
following lstep days both V aR and ES one-step ahead forecasts, with m = 1, · · · ,M .

2. Compute the training MCS over the training period going from i = 1 + j to i = Tin + j.
3. Obtain the proposed combined predictors V aRComb

(Tin+j+1):(Tin+lstep+j) and ESComb
(Tin+j+1):(Tin+lstep+j).

4. Iterate steps 1, 2, and 3, with j = {0, lstep, 2lstep, · · · , (nstep− 1)lstep}.



We use M = 20 models, Tin = 1000, and lstep = 25. Globally, the out-of-sample period
consists of 1350 observations from 3 January 2017 to 31 May 2022. The coverage level chosen is
α = 0.025. Before evaluating the proposed combined predictors together with the two additional
benchmarks, that is, the equally weighted combination (EW-Comb) and the median combination
(Median-Comb), and all the set of competing models, we focus on the source of uncertainty
associated with the selection of models. Figures 1 and 2 report the models entering the SSM in
blue. Interestingly, no specification consistently enters the SSM for all the periods considered,
independently of the use of the unweighted (Figure 1) or weighted (Figure 2) FZ0 loss. In other
words, there is strong evidence of model uncertainty.
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Figure 1: Training MCS, Unweighted FZ0 loss
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Figure 2: Training MCS, Weighted FZ0 loss

The combined predictors MCS-Comb and WL-MCS-Comb are then obtained equally weight-
ing all the VaR and ES forecasts of the models enters the SSM as illustrated in Figures 1 and
2. Table 2 reports the violation rate (VR, in percentage) in the first column, the p-values of the
UC, CC, and DQ tests for VaR in the columns from two to four, the p-values of the BD tests for



VaR and ES in columns from five to seven, the average of the FZ0 loss in the column eight, and
the standard deviation (SD) of the VaR forecasts for all the candidate models as well as the two
combined benchmarks and the two proposed combined predictors, for the whole out-of-sample
period. Dark shades of gray in the penultimate column indicate that the model in the row enters
the SSM of the MCS procedure at the significance level α = 0.25. Light shades of gray indicate
that the model in the row passes all the backtesting procedures at the significance level α = 0.05.
While many models (mainly some parametric and all the non-parametric specifications) do not
perform well, the two proposed combined predictors pass the usual backtesting procedures at
5% significance level and, moreover, enter the SSM of the final MCS test. Notably, the proposed
combined predictors have a smaller VaR standard deviations compared to the other models
entering the SSM.

The plot of the log-returns with the predicted VaR (red line) and ES (blue lines) obtained
from the proposed MCS-Comb predictor for the out-of-sample period is reported in Figure 3.

Table 2: Backtesting and MCS evaluation

VR(%) UC CC DQ BD-1 BD-2 BD-3 MCS SD

GARCH-N 3.630 0.013 0.044 0.115 0.254 0.253 0.001 -3.492 0.014
GARCH-t 3.556 0.019 0.063 0.168 0.634 0.627 0.345 -3.545 0.015
GJR-N 3.852 0.003 0.010 0.021 0.237 0.237 0.017 -3.521 0.016
GJR-t 3.333 0.062 0.161 0.172 0.191 0.187 0.518 -3.577 0.017
RGARCH-RVOL5-N 4.741 0.000 0.000 0.000 0.147 1.000 0.739 -3.495 0.010
RGARCH-RVOL5-t 5.037 0.000 0.000 0.000 1.000 1.000 1.000 -3.533 0.010
RGARCH-RB-SS-N 5.259 0.000 0.000 0.000 0.088 0.087 0.722 -3.452 0.010
RGARCH-RB-SS-t 6.000 0.000 0.000 0.000 0.157 0.160 0.036 -3.470 0.027
HS-25 6.519 0.000 0.000 0.000 0.031 0.012 0.000 -2.797 0.016
HS-50 4.593 0.000 0.000 0.000 0.046 0.031 0.000 -3.106 0.017
HS-100 4.148 0.000 0.001 0.000 0.117 0.177 0.095 -3.127 0.015
HS-250 4.074 0.001 0.002 0.000 0.100 0.100 0.426 -3.143 0.012
HS-500 3.704 0.008 0.001 0.000 0.073 0.073 0.481 -3.046 0.008
SAV 3.185 0.122 0.285 0.135 0.965 1.000 0.987 -3.572 0.014
AS 4.074 0.001 0.003 0.001 0.484 0.515 0.665 -3.552 0.016
IG 3.407 0.043 0.113 0.066 0.965 1.000 0.996 -3.588 0.014
CAViaR-X-RVOL5 2.889 0.372 0.500 0.224 0.938 0.908 0.739 -3.723 0.017
CAViaR-X-RB-SS 2.815 0.468 0.544 0.231 0.951 0.881 0.999 -3.750 0.016
MF-X-RVOL5 3.111 0.166 0.367 0.548 0.913 0.925 0.748 -3.649 0.019
MF-X-RB-SS 3.333 0.062 0.161 0.327 0.952 0.952 0.825 -3.672 0.018
EW-Comb 3.111 0.166 0.323 0.143 0.742 0.774 0.576 -3.649 0.012
Median-Comb 3.556 0.019 0.063 0.032 0.567 0.517 0.188 -3.648 0.013
MCS-Comb 3.259 0.088 0.209 0.102 0.855 0.827 0.233 -3.704 0.016
WL-MCS-Comb 3.111 0.166 0.323 0.123 0.857 0.839 0.339 -3.712 0.015

Notes: Sample period: 2017-01-03 to 2022-05-31 (1350 observations). Column MCS represents
the averages of the FZLoss. Dark shades of gray denote the inclusion in the SSM, at signifi-
cance level α = 0.25. Light shades of gray denote the success in all the considered backtesting
procedures, at significance level α = 0.05.

5. Conclusion

In this paper, we propose two forecast combination strategies based on the use of strictly
consistent joint VaR and ES loss functions and MCS in order to mitigate the impact of model
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Figure 3: S&P 500 Log-returns (black line), VaR (red line) and ES (blue line) of the
MCS-Comb predictor

uncertainty in tail risk forecasting. The proposed combined predictors are adaptive, as the com-
position and size of the set of best-performing models used in the combined forecast changes
over time without requiring parameter estimation. The empirical study that combines predic-
tions from 20 independent models on the S&P 500 index shows that the proposed combined
predictors successfully pass the backtesting procedures and, compared with benchmarks and
most individual models, enter the 75% evaluation MCS. Finally, the standard deviations of VaR
forecasts for the combined predictors are generally lower than those of competing models. For
future research, it would be interesting to investigate further combination strategies and expand
the set of individual models by also considering the impact of a larger number of exogenous
variables.
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