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The need for precision

A quote from (Cressie 2021) expresses it well:
In any applied statistics project, the statistician worries about 
uncertainty and quantifies it by modelling data as realisations 
generated from a probability space. Another approach to uncertainty 
quantification is to find similar data sets, and then use the variability 
of results between these data sets to capture the uncertainty

• The first approach is through probability model-based likelihood 
analysis, due to R.A. Fisher.

• The second approach is through “model-free” extensions of least 
squares and repeated sampling, due to J. Neyman and B. Efron.
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A road map slide where we’re heading

• Inferential tools for probability and machine learning analyses

• Use of Bootstrap

• The Bayesian bootstrap

• Modelling — splines and polynomials

• Precision modelling using the double GLM

• Complex example - Chlorophyll-a levels in the Great Barrier Reef lagoon.
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Inferential tools in probability model-based analysis

• Standard or generalised regression methods use some version of a model for data 𝑦 related to 
covariates 𝐱, typically a polynomial in the covariates:

𝑦|𝑥𝑖~𝑓(𝑔 𝛽′𝑥𝑖 , 𝜙)

for some density or mass function 𝑓, “link” function 𝑔 and precision constant 𝜙.

• If the random variation through 𝑓 also varies with 𝑥 then 𝜙 has to be modelled as well, typically 
through another polynomial model ℎ 𝑘 𝛾′𝑥𝑖 .

• Given f, 𝑔, h and k, inference is through the likelihood function.

• The approximate validity of the probability model 𝑓 has to be assessed, frequently from the 
residuals

𝑒𝑖 = 𝑦𝑖 − 𝑓 𝑔 ( መ𝛽′𝑥𝑖), 𝜙  .
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Inferential tools in machine learning

• Regression methods are based on extension of low-degree least squares: higher-level 
variability is represented by splines – small non-linear terms at break-points where 
slopes or curvatures change suddenly.

• Precision of the spline or other least squares procedure is assessed through the 
bootstrap resampling of the data.

• The bootstrap has been recently shown (Aitkin 2022, 13.7 pp. 178-180) to be ineffective 
in assessing precision.

• We need a different model-free procedure for precision: the Bayesian bootstrap.

• An example shows why….
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A simple example, of incomes

Family incomes in units of 1000 
USD, listed in increasing order, of 
𝑛 = 40 families sampled 
randomly from a population of 
size 648. The sample mean ᪄𝑦 and 
variance 𝑠2 are 67.1 and 500.9 .

26 35 38 39 42 46 47 47 47 52

53 55 55 56 58 60 60 60 60 60

65 65 67 67 69 70 71 72 75 77

80 81 85 93 96 104 104 107 119 120
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95% CI

Type Estimate Lower Upper

Population 𝜇

Gaussian model 67.1 60.1 74.0

What is the precision of the sample mean income? Is the interval based on the 
Gaussian model reliable?



Sample probit scale cdf graph

The figure shows the

• data (circles),

• fitted ML Gaussian distribution 
(line) and

• 95% credible region for the true cdf 
(red segments).

The best-fitting Gaussian cdf lies fully 
within the 95% credible region, despite 
the evident curvature.
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Assessing variability through the bootstrap

• The bootstrap is very widely used for assessing the precision of a sample estimate like the sample 
mean, of a population quantity without a probability model for the data.

• The given sample, called the pseudo-population here, is resampled with replacement a large 
number 𝐾 of times.

• For each of the 𝐾 bootstrap samples we compute the sample mean estimate ᪄𝑦𝑘 and

• We construct a 95% interval for 𝜇 from the 2.5% and 97.5% quantiles of the ordered sample 
estimates, or from the variance of the sample means.

• The process is computationally very fast and straightforward.

• We illustrate with 𝐾 = 200.
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Bootstrap means probit scale cdf graph
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Bootstrap analysis

• The asymptotic 95% confidence interval for the 
pseudo-population mean based on the variance 
of the bootstrap means is [60.4, 73.7].

• The 95% central confidence interval for the 
pseudo-population mean based on the 2.5% and 
97.5% quantiles of the bootstrap means is [60.9, 
74.0].

• These are both similar to, but shorter than, the 
Gaussian interval of [60.1, 74.0]. The bootstrap 
sample means are varying randomly, but are 
varying around the pseudo-population – sample 
– mean 𝜇 of 67.1, not the unknown population 
mean 𝜇.

95% CI

Type Estimate Lower Upper

Population 𝜇

Gaussian 
model

67.1 60.1 74.0

Bootstrap 
variance

67.1 60.4 73.7

Bootstrap 
quantiles

67.0 60.9 74.0
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How do we know the coverage of this interval for µ?
(Aitkin 2022 , §13.7, pp. 178-180) showed that the bootstrap samples are ancillary 
for the population mean: they convey no usable information about it.



A fundamental error in the bootstrap argument

• There is no necessary relation between the bootstrap confidence interval and the 
population mean: it depends on the unknown closeness of the sample mean to the 
population mean.

• The claim that the bootstrap confidence interval is a confidence interval for the 
population mean 𝜇 is unfounded: we cannot give a relevant probability statement 
about the confidence interval coverage.

• Formal likelihood theory shows that the bootstrap samples are irrelevant for inference 
about 𝜇.(Aitkin 2022 , §13.7, pp. 178-180)

• The uncertainty in the 𝑦 and hence 𝜇 is recognised in the Bayesian analysis through the 
multinomial likelihood and conjugate Dirichlet prior and posterior.
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Multinomial population and sample

• We write the 𝑁 unobserved population values of income as 𝑌1
∗, … , 𝑌𝑁

∗..
• We conceptually tabulate these 𝑁 income values into the 𝐷 ordered 

distinct unobserved values 𝑌1 < 𝑌2 < ⋯ < 𝑌𝐼 < ⋯ < 𝑌𝐷,
• with corresponding population counts 𝑁1, 𝑁2, … , 𝑁𝐼 , … , 𝑁𝐷,
• and population proportions 𝑃1, 𝑃2, … , 𝑃𝐷 with 𝑃𝐼 = 𝑁𝐼/𝑁.
• The population income 𝑌 has a multinomial distribution 𝑀 𝑁, 𝑃1, . . . , 𝑃𝐷 , 

with population mean 𝜇 = σ𝐼=1
𝐷 𝑃𝐼 𝑌𝐼.

• We tabulate the sample of size 𝑛 in the same way, into the 𝑑 ordered 
distinct observed values 𝑦1 < ⋯ < 𝑦𝑖 < ⋯ < 𝑦𝑑,

• with corresponding sample counts 𝑛1, 𝑛2, … , 𝑛𝑑,

• sample proportions 𝑝1, 𝑝2, … , 𝑝𝑑, and sample mean ᪄𝑦 = σ𝑖=1
𝑑 𝑝𝑖 𝑦𝑖  .
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The Bayesian solution

• To model-free people, ancillarity may appear irrelevant:
– They may dismiss the multinomial model and likelihood because the bootstrap is model-

free
– and does not need a model or a likelihood.

• To model-based people, the bootstrap has a model underlying it which should 
be recognised and incorporated in the analysis.

• How do we proceed with the sample data and just the multinomial model?

• The solution to this difficulty is to be fully Bayesian with the original sample.
• This was done with the Bayesian bootstrap by Don Rubin in 1981.
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The Bayesian bootstrap

To the multinomial likelihood, we add the conjugate Dirichlet prior with indices 𝑎𝑖 :

𝑃𝑟 {𝑛𝑖}|{𝑝𝑖} =
𝑛!

ς𝑖=1
𝑑 𝑛𝑖 !

ෑ

𝑖=1

𝑑

𝑝𝑛𝑖

𝜋 {𝑝𝑖}|{𝑎𝑖} =
𝑎!

ς𝑖=1
𝑑 𝑎𝑖 !

ෑ

𝑖=1

𝑑

𝑝𝑖
𝑎𝑖−1

where the 𝑎𝑖 are the prior parameters and 𝑎 = σ𝑖=1
𝑛 𝑎𝑖. The posterior distribution of the 𝑝𝑖  

is then Dirichlet with indices 𝑛𝑖 + 𝑎𝑖:

𝜋 {𝑝𝑖}|{𝑛𝑖}, {𝑎𝑖} =
𝑛 + 𝑎 !

ς𝑖=1
𝑑 𝑛𝑖 + 𝑎𝑖 !

ෑ

𝑖=1

𝑑

𝑝𝑖
𝑛𝑖+𝑎𝑖−1
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Posterior computation

• The reference non-informative prior has prior parameters 𝑎𝑖 = 0 for all 𝑖.

• We make 𝑀 random draws 𝑝𝑖
𝑚

of the 𝑝𝑖 from their posterior distribution,

• and substitute them into the mean to give [𝑀] random draws of the mean:

𝜇 𝑚 = 

𝑖=1

𝑑

𝑝𝑖
[𝑚]

 𝑦𝑖

• The figure shows 𝑀 = 10,000 random draws, cumulated to give the cdf of the 
posterior (marginal) distribution of the population mean.

• The 2.5% point is 60.60, the median is 66.91 and the 97.5% point is 74.42.
• 𝑀 = 10,000 draws give a very accurate approximation to the true cdf – no 

smoothing  – shown in small dot symbols to prevent crowding.
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Posterior probit of the income population mean 1/2

• The right tail is longer than the left.

• The probit graph for the posterior mean is slightly curved: it is not quite Gaussian.
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Posterior probit of the income population mean 2/2

The posterior median is almost identical to the sample mean.

The 95% central credible interval for the population mean is similar to the Gaussian 95% 
interval, 

but is shifted slightly to the right, reflecting the curvature of the sample cdf.

95% CI

Type Estimate Lower Upper

Population 𝜇

Gaussian model 67.1 60.1 74.0

Bootstrap variance 67.1 60.4 73.7

Bootstrap quantiles 67.0 60.9 74.0

Posterior probit 66.9 60.6 74.0
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Bootstrap extension to regression

• A common approach to “model-free” regression analysis is to obtain the 
least squares or generalised least squares estimate ෩𝛃 of 𝛃, and the fitted 
function ෩𝛃′𝐱.

• Without a probability model for 𝐲, the precision of the fitted function is 
obtained by bagging the fitted function – bootstrapping it,

• by resampling with replacement a large number of times the observed 
response and covariate data 𝑦𝑖 , 𝐱𝑖 ,

• and redoing the LS or GLS procedure with each resample.
• The variability among the bootstrap resamples of the fitted function is 

used to provide a (pointwise) confidence region for the true function.
• The region has no valid confidence coverage, as for the bootstrap.
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Machine learners are reluctant to use polynomials of 
higher order than 2. Splines are preferred instead:
• [Polynomials] are not very flexible in approximating 

functions with local features such as functions with 
varying degrees of smoothness at different 
locations.

• This leads to the introduction of spline functions 
that allow for more flexibility in function 
approximation (Fan et al. 2020, 31–32).

• The plot shows the cubic polynomial fit to 
motorcycle data (Silverman 1985). Clearly, it does 
not fit the data very well. Increasing the order of the 
polynomial fits will help reduce the bias issue, but 
will not solve the lack of fit issue… This is because 
the underlying function cannot be economically 
approximated by a polynomial function.
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Machine learning analysis
The motorcycle data
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Polynomial fits to motorcycle data using DGLM

Australia's National Science Agency 21

𝐸 accel = 𝑡 + 𝑡2 + 𝑡3 + 𝑡5 + 𝑡6 + 𝑡8 + 𝑡10

𝑙𝑜𝑔 𝑉 accel = 𝑡 + 𝑡2
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Complex data
Lidar Data from Ruppert, Wand, and Carroll (2003)
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LIDAR is an abbreviation for LIght Detection 
And Ranging.

• The figure gives the plot of the log of the 
ratio for the time reflected light to return 
from two laser sources against the range – 
the distance the light has travelled before 
being reflected.

• Note: The mean and the variance both 
fluctuate smoothly but not monotonically 
as range increases.

• We need to model both mean and variance independently.
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The double GLM for modelling Gaussian variability

Due to Aitkin (1987) and Smyth (1989). How does it work?

• We model the Gaussian log variance with a polynomial regression model, and
• the mean with a polynomial regression model.
• We alternate the two GLMs to convergence, for either ML or Bayesian 

posteriors:
– With a constant variance model, find the well-supported (by LRT) polynomial mean 

model.
– With the well-supported mean model, find the well-supported polynomial variance 

model.
– With the well-supported polynomial variance model, re-check the well-supported mean 

model.
– Repeat if necessary.
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Double GLM analysis

• The DGLM fit requires a tenth-degree 
polynomial for the mean, and a fourth-
degree polynomial for the log variance.

• The fitted model is shown with 95% 
precision intervals (green curves), and 
95% variability bounds (red curves).

• The bounds exclude 7 observations, 3.2% 
of the data: the Gaussian fit seems to be 
good.
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𝐸 logratio = 𝑡 + 𝑡2 + 𝑡3 + 𝑡4 + 𝑡5 + 𝑡6 + 𝑡7 + 𝑡8 + 𝑡9 + 𝑡10

𝑙𝑜𝑔 𝑉 logratio = 𝑡 + 𝑡2 + 𝑡3 + 𝑡4



Residual plot from LIDAR data DGLM model

• The probit plot of the 
standardised residuals shows a 
good fit to the Gaussian 
distribution: the cdf in red is 
entirely within the 95% credible 
region for the true cdf.
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Comment

Ruppert, Wand, and Carroll (2003) discussed high-degree polynomials 
for the LIDAR data in their §2.7 but dismissed them:

The degree-10 fit goes through the data reasonably well but has 
wiggles that are representative not of any features in the data but 
rather of high-degree polynomials generally. .. We might use high-
degree polynomial models if nothing better were available, but 
fortunately much better fitting methods are available. (p. 48)

They gave a very detailed discussion of the likelihood ratio test in their 
§4.8 but did not use it for this example, which would have shown the 
necessity of the 10-th degree mean function for this data set.
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Spline fit

• Ruppert, Wand, and Carroll (2003) gave in their Chapter 3 a very detailed 
development of the spline analysis and the effect of the number of knots and 
the penalty constant (for the penalised least squares analysis) on the 
appearance of the fitted model, illustrated by many graphs of the LIDAR data.

• Knots locate by eyeballing small changes in slope or gradient of the low-order 
polynomial which require additional basis functions to model the changes.

• They showed the substantial effect that the penalty constant may have on the 
degree of “wiggle” of the fitted model, with values of 0, 10, 30 and 1000. Their 
final fitted model was based on 24 knots and a penalty parameter of 30.

• The clear heterogeneity in the variance was analysed by log variance function 
spline fitting analogous to the spline mean fitting. This is a parallel to the 
double GLM fitting of Aitkin.
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Conclusions

• Regression structures of higher polynomial degree than two can be 
adequately represented by the appropriate degree of polynomial through
– the likelihood ratio test and

– the Gram-Schmidt orthogonalisation procedure,

– which is available in all numerical analysis and many statistical packages.

The double GLM can use the orthogonalisation in both mean and log variance 
regressions; typically the variance needs a much lower degree model than the 
mean.

• The spline analysis, while having a strong basis in statistical theory, 
remains dependent on the eyeball choice of the number of knots and the 
penalty constant; its precision cannot be formally expressed.
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GBR water quality data (Lloyd-Jones et al. 2022)

The second example is the variability over time, season and region in chlorophyll-a 
concentration in water samples from four regions of the Great Barrier Reef, to assess any 
trend or variability in pollutant levels. The published report is in Lloyd-Jones et al. (2022).
The log of the concentration of chlorophyll-a is the response variable, related to the design 
and other covariates:
• regions 1–4
• years 2005–2019
• months 1–12
• The sample sizes for each region were small in the early period, and the data set is too 

small (970) to allow for interactions.
• The among-months variation is modelled by a sine function, allowing among region 

variations, but
• consistent across years since they are all sites in the same climate and weather area.
• The trend and variability across years are modelled by a double GLM
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Location of Regions
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GBR Chlorophyll-a
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GBR Chlorophyll-a (fitted line using double GLM)
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Probit plot of DGLM residuals
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𝐸 logchloro = Region + 𝑠𝑖𝑛 𝑡∗ + 𝑐𝑜𝑠 𝑡∗

𝑙𝑜𝑔 𝑉 logchloro = Region

• NOTE: When the Gaussian assumption fails the bootstrap or Bayesian bootstrap can be 
used to estimate precision.
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Thank you

• ross.darnell@csiro.au

• murray.aitkin@unimelb.edu.au
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