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Abstract

Spatial process models are widely used for modeling point-referenced variables arising
from diverse scientific domains. Analyzing the resulting random surface provides deeper
insights into the nature of latent dependence within the studied response. We develop
Bayesian modeling and inference for rapid changes on the response surface to assess
directional curvature along a given trajectory. Such trajectories or curves of rapid
change, often referred to as wombling boundaries, occur in geographic space in the form
of rivers in a flood plain, roads, mountains or plateaus or other topographic features
leading to high gradients on the response surface. We demonstrate fully model based
Bayesian inference on directional curvature processes to analyze differential behavior in
responses along wombling boundaries. We illustrate our methodology with a number of
simulated experiments followed by multiple applications featuring the Boston Housing
data; Meuse river data; and temperature data from the Northeastern United States.

Keywords— Bayesian modeling, Directional Curvature, Gaussian Processes, Wombling.

1 Introduction

Spatial data science manifests in a variety of domains including environmental and geographi-

cal information systems (GIS) (Webster & Oliver 2007, Burrough et al. 2015, Schabenberger

& Gotway 2017, Plant 2018), digital cartography and terrain modeling (Law et al. 2000,

Santner et al. 2003, Jones 2014, Vaughan 2018), imaging (Winkler 2003, Chiu et al. 2013,
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Dryden & Mardia 2016), spatial econometrics and land use (LeSage & Pace 2009), public

health and epidemiology (Elliot et al. 2000, Waller & Gotway 2004, Lawson 2013) and pub-

lic policy (Haining 1993, Wise & Craglia 2007). Spatial data analysis seeks to estimate an

underlying spatial surface representing the process generating the data. Specific inferential

interest resides with local features of the surface including rates of change of the process at

points and along “spatial boundaries” to understand the behavior of the underlying process

and identify lurking explanatory variables or risk factors. This exercise is often referred to as

“wombling”, named after a seminal paper by Womble (1951); (also see Gleyze et al. 2001).

For regionally aggregated data, it identifies boundaries delineating neighboring regions and

has been used to study health disparities (Lu & Carlin 2005, Li et al. 2015, Gao et al.

2022) and ecological boundaries (Fitzpatrick et al. 2010). For point-referenced data, where

variables are mapped at locations within an Euclidean coordinate frame with a sufficiently

smooth spatial surface, it refers to estimating spatial gradients and identifying boundaries

representing large gradients (Banerjee et al. 2003, Banerjee & Gelfand 2006, Qu et al. 2021).

Our current contribution develops Bayesian inference for spatial curvature along curves

on Euclidean domains. Modeling curvature will require smoothness considerations of the

process (Adler 1981, Kent 1989, Stein 1999, Banerjee & Gelfand 2003). Observations over a

finite set of locations from these processes cannot visually inform about smoothness. There-

fore, smoothness of the process is specified from mechanistic considerations which can be

introduced through prior specifications as needed. While Bayesian inference for first order

derivatives and directional gradients have received considerable attention (see, e.g., Morris

et al. 1993, Banerjee et al. 2003, Majumdar et al. 2006, Liang et al. 2009, Heaton 2014,

Terres & Gelfand 2015, Wang & Berger 2016, Terres & Gelfand 2016, Wang et al. 2018, Qu

et al. 2021, for inferential developments involving spatial gradients from diverse modeling

and application perspectives) such processes inform about directional change, but do not

enable inference on curvature (departure from flatness) of the spatial surface.

2



Analyzing surface roughness from sampling considerations can be traced at least as far

back as Greenwood (1984). We offer full inference with uncertainty quantification about

spatial curvature at a point and average curvature along a curve from observed data after

accounting for explanatory variables. Considering second-order finite differences we estab-

lish a valid spatial curvature process as a limit of such finite difference processes. When

formulating directional curvature, we favor the normal direction corresponding to a chosen

curve and devise a “wombling” measure to track curvature of the surface along the curve.

We derive and exploit analytical expressions of higher order processes to avoid numerical

finite differences. The Bayesian inferential framework delivers exact posterior inference for

the above constructs on the response as well as latent (or residual) processes.

Section 2 develops the directional curvature processes through a differential operator.

Section 3 develops the vector analytic framework for curvilinear wombling using curvature

processes. Section 4 builds a hierarchical model to exploit the preceding distribution theory

and conduct curvature analysis on the response and the latent process. Section 5 presents

detailed simulation experiments for assessing directional gradients and curvatures. Section

6 considers applications to three different data sets: Boston housing data, Meuse river data,

and Northeastern US Temperatures (the third data is presented in the Supplement).

2 Spatial Curvature Processes

Let {Y (s) : s ∈ S ⊂ Rd} be a univariate weakly stationary random field with zero mean,

finite second moment and a positive definite covariance function K(s, s′) = Cov (Y (s), Y (s′))

for locations s, s′ ∈ Rd. In particular, under isotropy we assume K(s, s′) = K̃ (||s− s′||),

where ||s− s′|| is the Euclidean distance between the locations s, s′ (Matérn 2013). Building

upon notions of mean square smoothness (see, e.g., Stein 1999) at an arbitrary location s0

in Rd, we focus upon second order differentiability, Y (s0 + hu) = Y (s0) + hu>∇Y (s0) +

h2u>∇2Y (s0)u/2 + r2(s0, h
2||u||), where r2(s0, h

2||u||)/h2 → 0 as h→ 0 in the L2 sense and
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∇ and ∇2 are the gradient and Hessian operators, respectively.

For the scalar h and unit vectors u, v, we define Y
(2)
u,v,h(s0) = (Y (s0 + h(u + v)) −

Y (s0 + hu) − Y (s0 + hv) + Y (s0))/h2 to be the second order finite difference processes

in the directions u, v at scale h. Being a linear function of stationary processes it is

well-defined. Passing to limits, D
(2)
u,vY (s0) = limh→0 Y

(2)
u,v,h(s0). Provided the limit ex-

ists, D
(2)
u,uY (s0) is defined as the directional curvature process. If Y (s) is a mean square

second order differentiable process in Rd for every s ∈ Rd then D
(2)
u,vY (s) = u>∇2Y (s)v

is well-defined with D
(2)
u,vY (s) = limh→0

(
h2u>∇2Y (s)v + r̃2

)
/h2 = u>∇2Y (s)v, where

r̃2 = r2(s, h2||u + v||) − r2(s, h2||u||) − r2(s, h2||v||). In practice, we need only work with

computing these derivatives for an orthonormal basis of Rd, say the Euclidean canonical unit

vectors along each axis {e1, . . . , ed}. If u =
∑d

i=1 uiei, and v =
∑d

i=1 viei are arbitrary unit

vectors, we can compute D
(2)
u,vY (s) =

∑d
i=1

∑d
j=1 uiD

(2)
ei,ej

Y (s)vj. The directional curvature

process is linear in the sense that D
(2)
−u,−vY (s) = D

(2)
u,vY (s), D

(2)
u,−vY (s) = D

(2)
−u,vY (s) =

−D(2)
u,vY (s). Since D

(2)
w,wY (s) = ||w||2D(2)

u,uY (s), where w = ||w||u and u is a unit direc-

tion, we henceforth only consider unit directions. First order directional gradient processes,

D
(1)
u Y (s), are reviewed in Banerjee & Gelfand (2006) and in Section S1.1 of the Supplement.

Choosing a direction is emphasized with respect to interpreting the directional curvature

processes. Directional curvature is the change in the normal to the surface Y (s) at s0 when

moving along a slice of the surface in the direction w. The associated algebraic sign locally

classifies the nature of curvature at s0—for instance, convex or concave ellipsoids (see Stevens

1981). A detailed discussion, with illustration, is available in Section S2 of the Supplement.

Since ∇2Y (s) is a symmetric matrix, to avoid singularities arising from duplication

we modify D
(2)
u,vY (s) as follows. If vech is the usual half-vectorization operator for sym-

metric matrices and Dd is the duplication matrix (Magnus & Neudecker 1980) of order

d2 × d(d + 1)/2 then, D
(2)
u,vY (s) = c>u,vvech (∇2Y (s)) where c>u,v = (u ⊗ v)>Dd and

⊗ is the Kronecker product for matrices. If u = (u1, u2)>,v = (v1, v2)> ∈ R2, then
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cu,v = (u ⊗ v)>D2 = (v1u1, v1u2 + v2u1, v2u2)>. The process vech (∇2Y (s)) in Rd(d+1)/2

consists of the pure and mixed second order derivatives in ∇2Y (s). The distributions

needed for inference on directional curvature processes depend on vech (∇2Y (s)) rather than

∇2Y (s). We refer to (∇Y (s)>, vech(∇2Y (s))>)> as the differential process and {u>∇Y (s),

c>u,uvech(∇2Y (s))} as the directional differential processes induced by Y (s) along u.

Inference for differential processes requires (Y (s),∇Y (s)
>
, vech(∇2Y (s))

>
) to be a valid

multivariate process. Its existence is derived from the limit of corresponding finite difference

approximations, which yields the cross-covariance matrix depending on fourth (and lower)

order derivatives ofK. We investigate the parent and differential processes using a differential

operator L : R1 → Rm, m = 1 + d+ d(d+ 1)/2, where LY =
(
Y,∇Y >, vech(∇2Y )>

)>
. The

resulting process LY (s) is also stationary with a zero mean and a cross-covariance matrix

VLY (∆) =


K(∆) −(∇K(∆))> vech(∇2K(∆))>

∇K(∆) −∇2K(∆) ∇3K(∆)>

vech(∇2K(∆)) −∇3K(∆) ∇4K(∆)

 , (1)

where ∆ = s−s′, ∇K(∆) is the d×1 gradient, ∇2K(∆) is the d×d Hessian, ∇3K(∆) is the

d(d+1)/2×d matrix of third derivatives and ∇4K(∆) is the d(d+1)/2×d(d+1)/2 matrix of

fourth order derivatives associated with K(∆). Under isotropy, ∇K(∆) = ∇K̃(||∆||)
||∆|| ∆, if A0 =(

∇2K̃(||∆||)− ∇K̃(||∆||)
||∆||

)
then, ∇2K(∆) = ∇K̃(||∆||)

||∆|| Id+A0
∆∆>

||∆||2 , ∇3K(∆) = A0

{
vech(Id)>⊗∆
||∆||2 −

3vech(∆∆>)>⊗∆
||∆||4 + 1

||∆||2

(
∂vech(∆∆>)

∂∆

)}
+∇3K̃(||∆||)· vech(∆∆>)>⊗∆

||∆||3 , where K̃(∆) and its deriva-

tives are analytically computed for our covariance functions of interest in Section S3 of the

Supplement. Let A1 = ∂∆⊗vech(Id)>

∂∆
, A2 = ∂∆⊗vech(∆∆>)>

∂∆
, A3 = ∂

∂∆

(
∂vech(∆∆>)

∂∆

)
be reordered

tensors (matrices) of order d(d+ 1)/2× d(d+ 1)/2 conforming to the order of corresponding

elements in vech. Let A4 be the element-wise product of ∆ with
(
∂vech(∆∆>)

∂∆

)
in the same
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order, B1 = vech(∆∆>)vech(Id)
> and B2 = vech(∆∆>)vech(∆∆>)>. Then, ∇4K(∆) is,

A0

{
A1

||∆||2
− 3

A2

||∆||4
+

A3

||∆||2
− (1 + A4)

(
2B1

||∆||4
+

B1

||∆||3

)
+ 3

(
4B2

||∆||6
+

B2

||∆||5

)}
+∇3K̃(||∆||)

(
B1

||∆||3
+

A2

||∆||3
+

A4

||∆||3
− 6

B2

||∆||5

)
+∇4K̃(||∆||) B2

||∆||4
.

(2)

The resulting multivariate differential process, LY , is stationary but not isotropic. Ev-

idently, for the differential operator to be well-defined under isotropy, ∇4K(0) must exist

since var(D
(2)
u,uY (s)) = ∇4K̃(0) (analogous to results in Banerjee et al. 2003, Section 3). The

directional differential operator is defined analogously as LuY (s) such that Lu : R→ R3. If

a0 =
(

1− (u>∆)2

||∆||2

)
, then analogous to (2) the covariance function of the directional curva-

ture process, Cov
(
c>u,uvech(∇2Y (s)), c>u,uvech(∇2Y (s′))

)
= 3
||∆||2 (5a0 − 4)a0A0 + 6

||∆||(1 −

a0)a0∇3K̃(||∆||)+(1−a0)2∇4K̃(||∆||). To characterize covariance functions that admit such

processes, we turn to spectral theory. Recall that for a positive definite function K defined in

R, Bochner’s theorem (see e.g., Williams & Rasmussen 2006) establishes the existence of a fi-

nite positive spectral measure F on R. K can be expressed as the inverse Fourier transform of

F , K(t) =
∫
R e
−iλtF(dλ). In cases where F admits a spectral density, K(t) =

∫
e−iλtf(λ) dλ.

For ∇4K to exist, a trivial extension of the result in Wang et al. (2018) requires that f

possess a finite fourth moment. Examples of covariance kernels that satisfy this condition

are (a) the squared exponential covariance kernel with K(t) = exp(−t2) (σ2 = φ = 1),

and f(λ) = 1/2
√
π exp(−λ2/4) then, 1

2
√
π

∫
R λ

4 exp(−λ2/4) dλ = 3(
√

2)4 = 12; and (b) the

Matérn class with fractal parameter, ν; f(λ) is known to belong to the t-family (see e.g., Stein

1999) with f(λ) = C(φ, ν)/(c(φ, ν) +λ2)ν+1/2 then,
∫
R λ

4C(φ, ν)/(c(φ, ν) +λ2)ν+1/2 dλ <∞,

for all ν > 2 (since the fourth central moment for the t-distribution exists if ν > 2). Here,

we consider formulating the directional differential processes using these two classes of co-

variance functions (a) the squared exponential, K̃(||∆||) = σ2 exp(−φ||∆||ν), ν = 2; and (b)

members of the Matérn class, K̃(||∆||) = σ2(φ||∆||)νKν(φ||∆||), where Kν is the modified

Bessel function of order ν (see e.g., Abramowitz et al. 1988), and ν controls the smoothness
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of process realizations. We are particularly interested in ν = 5/2.

The multivariate process, LY (s), is valid under the above assumptions without any

further specific parametric assumptions over what has been outlined above. To facilitate

inference for LY (s), a probability distribution is specified for the parent process. We as-

sume that Y (s) ∼ GP (µ(s,β), K(·;σ2, φ)) is a stationary process specified on Rd. In what

follows we also assume that K = K(·;σ2, φ) admits four derivatives. There are some im-

mediate implications of a Gaussian assumption on the parent process. If Y1(·) and Y2(·)

are zero mean, independent stationary Gaussian processes on Rd, then (i) the differential

processes LY1 and LY2 are independent of each other; (ii) if c1, c2 ∈ R are scalars, then

L(c1Y1 + c2Y2) = c1LY1 + c2LY2 is stationary and (iii) any sub-vector of LY , for example Y

or (Y,∇Y >)>, is a stationary Gaussian processes.

If K is k-times mean square differentiable (i.e. ∇2kK exists), the proposed differential

operator can be extended to include higher order derivatives of ∇kY (s) (Mardia et al. 1996).

Differential operators characterizing change in the response (and gradient) surface also follow

valid stationary Gaussian processes. For instance, at an arbitrary location s0 the divergence

operator, div(Y (s0)) =
d∑
i=1

∂

∂ei
Y (s0) = c>1 LY (s0), where c1 is an m × 1 vector with 0’s in

all places except for first order derivatives where it takes a value of 1, and the Laplacian, de-

fined as the divergence operator for gradients, ∆(Y (s0)) =
d∑
i=1

(∇2Y (s0))ii =
d∑
i=1

∂2

∂e2
i

Y (s0) =

c>2 LY (s0), where c2 is a m × 1 vector with 0’s in all places except for pure second order

derivatives where it takes a value of 1. Furthermore, they follow valid Gaussian processes

with var(div(Y (s0))) = c>1 VLc1 and var(∆(Y (s0))) = c>2 VLc2.

Let Y (s) be a Gaussian parent process with a twice-differentiable mean function µ(s,β),

i.e. ∇µ(s,β) and ∇2µ(s,β) exist, and let K(·) be a covariance function with variance σ2

and range φ. Let Y = (Y (s1), . . . , Y (sL))> be the observed realization over S with mean

µ = (µ(s1,β), . . . , µ(sL,β))> and ΣY be the associated L × L covariance matrix with ele-

ments K(si, sj), and s0 be an arbitrary location. Let∇K1 =
(
∇K(δ1)>, . . . ,∇K(δL)>

)>
and
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∇K2 =
(
vech(∇2K(δ1))>, . . . , vech(∇2K(δL))>

)>
be L× d and L× d(d+ 1)/2 matrices, re-

spectively, and δi = si− s0, i = 1, . . . , L. The distribution P (Y,∇Y (s0), vech(∇2Y (s0)) | θ),

where θ = {β, σ2, φ}, is the m0 = L+ d+ d(d+ 1)/2-dimensional Gaussian,

Nm0




µ

∇µ(s0)

vech(∇2µ(s0))

 ,


ΣY −∇K1 ∇K2

∇K>1 −∇2K(0) ∇3K(0)

∇K>2 −∇3K(0)> ∇4K(0)



 , (3)

which is well-defined as long as the fourth order derivative of K exists. The posterior

predictive distribution for the differential process at s0 is

P (∇Y (s0), vech(∇2Y (s0)) | Y) =

∫
P (∇Y (s0), vech(∇2Y (s0)) | Y,θ)P (θ | Y) dθ . (4)

Posterior inference for curvature proceeds by sampling from P (vech(∇2Y (s0)) | Y) =∫
P (vech(∇2Y (s0)) | ∇Y (s0),Y,θ)P (∇Y (s0) | Y,θ)P (θ | Y) dθ d∇Y . We sample from

(4) by drawing one instance of (∇Y (s0), vech(∇2Y (s0)) for each sample of θ obtained from

P (θ | Y). The conditional predictive distribution of the differential process is given by

∇Y (s0), vech(∇2Y (s0)) | Y,θ ∼ Nm1 (µ1,Σ1) where m1 = d+ d(d+ 1)/2, and

µ1 =

 ∇µ(s0)

vech(∇2µ(s0))

−
∇K1

∇K2


>

Σ−1

Y
(Y − µ) , (5)

Σ1 =

−∇2K(0) ∇3K(0)>

−∇3K(0) ∇4K(0)

−
∇K1

∇K2


>

Σ−1

Y

−∇K1

∇K2

 . (6)

Analogous results follow for posterior predictive inference on the curvature process.

If µ(s,β) = µ is a constant, as in simple “kriging”, then ∇µ(s) = ∇2µ(s) = 0. More gen-

erally, if µ(s,β) = x(s)>β, where x(s) is a vector of spatially indexed covariates and x(s)>β

produces a twice differentiable trend surface then explicit calculation of ∇µ(s0) and ∇2µ(s0)

are possible. In case Y (s) = µ(s,β)+Z(s)+ε(s), where Z(s) ∼ GP (0, K(·;σ2, φ)) and ε(s) ∼
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N(0, τ 2) is a white noise process, inference on gradients for the residual spatial process, Z(s),

can be performed from the posterior predictive distribution, P (∇Z(s0), vech(∇2Z(s0)) | Y).

We address this in Section 4 in the context of curvature wombling.

3 Wombling with Curvature Processes

Bayesian wombling deals with inference for line integrals

Γ(C) =

∫
C

g (LY ) d` or, Γ(C) =
1

`(C)

∫
C

g (LY ) d` , (7)

where C is a geometric structure of interest, such as lines or planar curves, residing within

the spatial domain of reference, ` is an appropriate measure, often taken to be the arc-length

measure, g is a linear function (or functional) of the differential operator LY . Γ and Γ are

referred to as the total and average wombling measures respectively. The structure C is

defined to be a wombling boundary if it yields a large total (or average) wombling measure.

Depending on the spatial domain, geometric structures of interest constructed within them

may vary. For example, if we are dealing with surfaces in R3, choices of C are curves and

lines within the surface, with the local co-ordinate being R2. In higher dimensions they

would be planes (curves) or hyperplanes (hypercurves). Specifically, Bayesian curvilinear

wombling involves estimating integrals in (7) over curves, which tracks rapid change over

the spatial domain by determining boundaries (curves) with large gradients normal to the

curve (see for e.g., Banerjee & Gelfand 2006). The integrand in (7) inherently involves a

direction, in particular change measured is always in a direction normal to C. Hence, g(LY )

can equivalently be expressed as a linear function (functional) of LnY (s), where n = n(s)

denotes the unit normal vector to C at s. The next few paragraphs provide more detail.

With wombling measures for directional gradients discussed the Supplement, Section

S1.2, we construct wombling measures for curvature. Given C, depending on the smooth-

ness of the surface, the rate at which gradients change along the curve may present sufficient
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heterogeneity while traversing the curve. If C forms a wombling boundary with respect to

the gradient, then wombling boundaries for curvature are subsets of C that feature segments

with large positive (negative) directional curvature along a normal direction to the curve.

Leveraging only gradients, we develop wombling measures for curvature that further char-

acterize such boundaries located for gradients. The wombling measure for curvature in Y (s)

along C ascertains whether C also forms a wombling boundary with respect to curvature. We

associate a directional curvature to each s ∈ C, g(LY (s)) = D
(2)
n,nY (s) = c>n,nvech(∇2Y (s))

(a linear function of LnY (s)) along the direction of a unit normal n = n(s) to C at s. Using

(7) we define wombling measures for total and average curvature as,

Γ(2)(C) =

∫
C

D
(2)
n,nY (s)d` =

∫
C

n(s)>∇2Y (s)n(s)d` , Γ
(2)

(C) = Γ(2)(C)/`(C) , (8)

respectively, where `(C) denotes the arc-length of C. Parameterized curves, C = {s(t) =

(s1(t), s2(t)) : t ∈ T ⊂ R}, offer further insights. As t varies over its domain, s(t) outlines

the curve C. Implicitly assuming that C is regular, i.e., ||s′(t)|| 6= 0, allows the tangent and

normal to exist at all points on the curve. The unit tangent and normal at each point of

the curve are s′(t)/||s′(t)|| and n = n(s(t)) = (s′2(t),−s′1(t))>/||s′(t)||, respectively, while

cn,n = cn(s(t)),n(s(t)) = (n(s(t))⊗ n(s(t)))>Dd from Section 2.

The arc-length of C is `(C) =
∫
T ||s

′(t)|| dt or d` = ||s′(t)|| dt. If T = [t0, t1], then `(C) =∫ t1
t0
||s′(t)|| dt and Γ(2)(C) =

∫ t1
t0

n(s(t))>∇2Y (s(t))n(s(t))||s′(t)|| dt. If C is an open curve,

then `(C)−1
∫
C

n(s)>∇2Y (s)n(s)ds = `(C)−1
∫
C

n(s(t))>∇2Y (s(t))n(s(t))||s′(t)|| dt is the

average directional curvature. For example, C = {s(t) = (r cos t, r sin t), t ∈ [0, π/4]} is the

arc of a parameterized circle of radius r. It follows that ||s′(t)|| = r, n(s(t)) = (cos t, sin t)>

and `(C)−1 ∫ π/4
0

n(s(t))>∇2Y (s(t))n(s(t))r dt = 4
π

∫ π/4
0

n(s(t))>∇2Y (s(t))n(s(t)) dt. The av-

erage curvature in the tangential direction of C is 1
`(C)

∫
C

u(s(t))>∇2Y (s(t))u(s(t))||s′(t)|| dt =

`(C)−1

∫ t1

t0

s′(t)

||s′(t)||

>

∇2Y (s(t))
s′(t)

||s′(t)||
||s′(t)|| dt = u(s(t1))>∇Y (s(t1))−u(s(t0))>∇Y (s(t0)).

Hence, the average directional curvature remains path independent and is the difference of
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directional gradient at the end points of C.

For a closed curve C,
∮
C

n(s)>∇2Y (s)n(s)ds =
∮
C

n(s(t))>∇2Y (s(t))n(s(t))||s′(t)|| dt. If

the surface admits up to three derivatives, i.e. ∇3Y (s) exists, the average curvature of the

region, D, enclosed by C, is free of t. If F(s) = ∇2Y (s) = (Fij(s))i,j=1,2, with F12(s) =

F21(s) and Fij = Fij(s) =
∂2

∂si∂sj
Y (s) then,

∮
C

n(s)>∇2Y (s)n(s)ds =
∮
C

n(s)>F(s)n(s)ds =∮
C

n(s(t))>F(s)n(s(t))||s′(t)|| dt =
∮
C
||s′(t)||−1 (F11s

′
2(t)2 − 2F12s

′
1(t)s′2(t) + F22s

′
1(t)2) dt =∫∫

D

{
∂F11n2

∂s1
+
(
∂F12n2

∂s2
+ ∂F12n1

∂s1

)
+ ∂F22n1

∂s2

}
ds1ds2. The last equality is obtained using Green’s

theorem (see for e.g., Rudin 1976). This can be interpreted as “flux” in the gradient withinD.

Since, Fij(s) = ∇2
ijY (s), the integrand in the last equality require the existence of ∇3

ijkY (s),

i, j, k = 1, 2. Denoting, ∇̃3Y (s) = (∇3
ijkY (s))>i,j,k=1,2, vector of unique third derivatives, and

n0(s) = (n2(s), n2(s), n1(s), n1(s))> then,

1

`(C)

∮
C

c>n,nvech(∇2Y (s)) ds =
1

`(C)

∫∫
D

n0(s)>∇̃3Y (s) ds. (9)

This extends the development in Section 3.2 of Banerjee & Gelfand (2006) to study the

behavior of spatial curvature over closed curves on surfaces in R3. Sampling along C is

generally harder than sampling inside D. Hence, the computational implications of (9) are

more appealing. When studying the same behavior along a tangential direction to C with

s(t0) = s(t1) = s0,

∮
C

u(s)>∇2Y (s)u(s)ds =

∮ s(t1)

s(t0)

F11(s)n1ds1+F12(s)n1ds2+F21(s)n2ds1+

F22(s)n2ds2 = u(s(t1))>∇Y (s(t1)) − u(s(t0))>∇Y (s(t0)) = 0, again a consequence of path

independence. This validates the choice of a normal direction to C when measuring change in

the gradient. Using the rectilinear approximation to curvature wombling, as discussed later,

provides a more computationally tractable and simpler approach, where double integrals

manifest when computing variances of the wombling measures.

Curvature wombling requires predictive inference performed using gradient measures on

the interval T , to include Γ(2)(C) (or Γ
(2)

(C)) in (8). Leveraging inference for differential

processes in Section 2, we obtain joint inference on the wombling measures. Suppose C =
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{s(t) : t ∈ [0, T ]} is generated over T = [0, T ]. For any t∗ ∈ [0, T ], let Ct∗ denote the curve

restricted to [0, t∗] and `(Ct∗) its arc-length. Line integrals for curvilinear gradient and curva-

ture wombling measures are Γ(1)(Ct∗) =
∫ t∗

0
D

(1)
n Y (s(t))||s′(t)|| dt, Γ

(1)
(Ct∗) = 1

`(Ct∗ )
Γ(1)(Ct∗),

Γ(2)(Ct∗) =
∫ t∗

0
D

(2)
n,nY (s(t))||s′(t)|| dt and Γ

(2)
(Ct∗) = 1

`(Ct∗ )
Γ(2)(Ct∗). Since D

(1)
n Y (s(t)) and

D
(2)
n,nY (s(t)) are Gaussian processes on T , Γ(1)(Ct∗) and Γ(2)(Ct∗) are valid dependent Gaus-

sian processes on T . Therefore, Γ(Ct∗) = (Γ(1)(Ct∗),Γ
(2)(Ct∗))

> ∼ N2

(
µΓ(t∗),KΓ(t∗, t∗)

)
,

where µΓ(t∗) =
(∫ t∗

0
D

(1)
n µ(s(t))||s′(t)|| dt ,

∫ t∗
0
D

(2)
n,nµ(s(t))||s′(t)|| dt

)>
= (m1(t∗),m2(t∗))>

and KΓ(t∗, t∗) = {kij(t∗, t∗)}i,j=1,2 whose elements are evaluated as

kij(t
∗, t∗) = (−1)j

∫ t∗

0

∫ t∗

0

a>i (t1)∇i+jK(∆(t1, t2))aj(t2)||s′(t1)||||s′(t2)|| dt1 dt2 , (10)

where a1(t) = n(s(t)) and a2(t) = cn(s(t)),n(s(t)). Simplifications arise in d = 2. For

example, cn,n(t) = (s′2(t)2,−2s′2(t)s′1(t), s′1(t)2)>, while ∇kK, for k = 2, 3, 4, are matrices of

orders 2 × 2, 2 × 3 and 3 × 3, respectively, of partial and mixed second, third and fourth

derivatives of K and ∆(t1, t2) = s(t2)−s(t1). For any two points t∗1, t
∗
2 ∈ T , the dependence is

specified through

Γ(Ct∗1)

Γ(Ct∗2)

 ∼ N4


m1

m2

 ,

k11 k12

k21 k22


, where mi = (mi(t

∗
1),mi(t

∗
2))>,

kij =

kij(t∗1, t∗1) kij(t
∗
1, t
∗
2)

kij(t
∗
2, t
∗
1) kij(t

∗
2, t
∗
2)

, i, j = 1, 2. Generally, for nP points partitioning T the

above can be analogously extended. Clearly, Γ(Ct∗) is a mean squared continuous process.

However, stationarity of Y (s) does not imply stationarity of Γ(Ct∗). For any sj ∈ S with

Cov(Y (sj),Γ(Ct∗)) = γj(t
∗) and ∆j(t) = s(t)− sj we have,

γj(t
∗) =

(∫ t∗

0

D
(1)
n K(∆j(t))||s′(t)|| dt,

∫ t∗

0

D
(2)
n,nK(∆j(t))||s′(t)|| dt

)>
. (11)

A valid joint distribution can be specified over T by, Y

Γ(Ct∗)

 ∼ NL+2


 µ

µΓ(t∗)

 ,

 ΣY γΓ(t∗)

γ>Γ(t∗) KΓ(t∗, t∗)


 , (12)

12



where γ>Γ(t∗) = [γ1(t∗) γ2(t∗) · · · γL(t∗)] is the 2× L cross-covariance matrix.

In practical applications curvilinear wombling is performed by approximating the curve C

using linear segments. These measures at the segment level are then aggregated to produce a

wombling measure for the curve. The curve is segmented using a partition. Consequently, the

accuracy of estimated wombling measures for the curve depend on the choice of partition.

Figures S2 and S3 in the online Supplement illustrate this concept. Explicitly, let C be

a regular rectifiable curve and [a, b] ⊂ T be a compact interval. Let g be a uniformly

continuous function. For any partition, P of [a, b], a = t′0 < t′1 < . . . < t′nP
= b, with its

norm defined as |P | = max
i=1,...,nP

(t′i−t′i−1). A polygonal (piecewise-linear) approximation to the

curve is, C̃P =
nP⋃
i=1

Cti , where Cti = {s(t′i−1) + tui, t ∈ [0, ti]}, ti = ||s(t′i)− s(t′i−1)|| and ui =

||s(t′i)− s(t′i−1)||−1(s(t′i)− s(t′i−1))>. Note that s(t) = s(t′i−1) + tui for t ∈ [0, ti] and, hence,

||s′(t)|| = ||ui|| = 1. Wombling measure for C̃P is, Γ(C̃P ) =
nP∑
i=1

∫
Cti
g (LY (s(t))) ||s′(t)|| dt.

As |P | → 0 we have, Γ(C̃P )
a.s.−→ Γ(C) =

∫ b
a
g (LY (s(t))) ||s′(t)|| dt. This provides us with

an estimate, Γ(C̃P ) for curvilinear wombling measures associated with any general curve C.

Further details are provided in the Supplement, at the end of Section S5.

The choices of g for our wombling measures result in, u>∇Y and c>u,uvech(∇2Y ), which

are linear and therefore uniformly continuous over any compact interval. Since predictive

inference is performed iteratively on individual line segments, it is sufficient to show the infer-

ential procedure for an arbitrary curve segment Cti . The normal to Cti is free of t and denoted

as, u⊥i , which is the normal to ui. The associated wombling measures with Cti are Γ(ti) =(∫ ti

0

D
(1)

u⊥i
Y (s(t)) dt,

∫ ti

0

D
(2)

u⊥i ,u⊥i
Y (s(t)) dt

)>
. For a point sj define ∆i−1,j = si−1 − sj,

j = 1, 2, . . . , L. Their joint distribution is specified by (12), where γj(ti) is obtained from (11)

by replacing ∆j(t) with ∆i−1,j+tui and KΓ(ti, ti) is obtained from (10) replacing ∆(t1, t2) =

(t2−t1)ui in the integrand. The analytic tractability of the line integrals in γj(ti) is not a con-

cern. Given choices of µ(·) and K(·), they are all one or two dimensional integrals which are

efficiently computed using simple quadrature. For example, let Y (s) be the isotropic Gaus-
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sian process with mean µ(s) = µ andK(||∆||;σ2, φ) = σ2 exp(−φ||∆||2), where ∆ = (δ1, δ2)>.

∇kK(∆), k = 2, 3, 4 is obtained from (2) and related results. γj(ti) = γj(ti;σ
2, φ) ={

Φ
(√

2φ
(
ti + u>i ∆i−1,j

))
− Φ

(√
2φu>i ∆i−1,j

)}
(c1, c2)> where, c1 = c1(σ2, φ,u⊥i ,∆i−1,j) =

−2σ2
√
πφu⊥i

>
∆i−1,je

−φ
(
u⊥i
>

∆i−1,j

)2
, c2 = c2(σ2, φ,u⊥i ,∆i−1,j) = c1(1−2φu⊥i

>
∆i−1,j∆

>
i−1,ju

⊥
i ),

and Φ(·) denotes the standard Gaussian cumulative distribution function. These are simple

computations with quadrature required only for computing KΓ(ti, ti).

4 Bayesian Hierarchical Model

We operate under a Bayesian hierarchical model, which is specified as

Y (s) = µ(s,β) + Z(s) + ε(s) , (13)

where Z(s) ∼ GP (0, K(·;σ2, φ)) is a Gaussian process, and ε(s) ∼ N(0, τ 2) is a white

noise process, termed as the nugget (see Banerjee et al. 2014, and references therein). The

process parameters are θ = {β, σ2, φ, τ 2}. More generally, we can consider a latent spec-

ification for response arising from exponential families, α(η(s)) = x>(s)β + Z(s) + ε(s),

Z(s) ∼ GP (0, K(·;σ2, φ)) and Y (s) ∼ π (η(s), ·), where α is a monotonic link function,

π is a member of the exponential family and η is the natural parameter. Predictive in-

ference on differential processes and curvature wombling proceeds on the latent surface

through P (LZ | Y). The joint posterior for differential processes is obtained through,

P (∇Z>, vech(∇2Z)> | Y) =
∫
P (∇Z>, vech(∇2Z)> | Z,θ)P (Z | Y,θ)P (θ | Y) dθ dZ, while

wombling measures ΓZ(t∗) for a curve Ct∗ within the estimated posterior surface for Z, are

sampled from the posterior, P (ΓZ(t∗) | Y) =
∫
P (ΓZ(t∗) | Z,θ)P (Z | Y,θ)P (θ | Y) dθ dZ.

Customary prior specifications for θ yield

P (θ,Z | Y) ∝ U(φ | aφ, bφ)× IG(σ2 | aσ, bσ)× IG(τ 2 | aτ , bτ )×NL(Z | 0, σ2RZ)

×Np(β | µβ,Σβ)×
L∏
l=1

N1

(
Y (sl) | x(sl)

>β + Z(sl), τ
2
)
,

(14)
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where IG denotes the inverse-gamma distribution with a shape-rate parameterization, U

is a uniform distribution and RZ is the correlation matrix corresponding to K(·;σ2, φ).

The resulting full conditionals are β | τ 2,Z,Y ∼ Np(Mβmβ,Mβ), σ2 | φ,Z ∼ IG(aσ +

L
2
, bσ + 1

2
Z>R−1

Z (·;φ)Z), τ 2 | β,Z,Y ∼ IG
(
aτ + L

2
, bτ + 1

2
||Y −Xβ − Z||22

)
, Z | Y,θ ∼

NL(MZmZ , τ
2MZ), where X is the L×p matrix with x(si)

> as rows, M−1
β = Σ−1

β +τ−2X>X,

mβ = Σ−1
β µβ + τ−2X>(Y − Z), M−1

Z = τ−2
(
τ−2IL + σ−2R−1

Z (·;φ)
)
, and mZ = Y −Xβ. φ

is updated using Metropolis steps with a normal proposal and an adaptive variance.

Under this setup posterior samples for the differential processes and wombling measures

result from (5) and (6). For each posterior sample of {Z,θ}, we draw ΓZ(t∗) | Z,θ ∼

N2

(
µΓZ

(t∗) − γ>ΓZ
(t∗)Σ−1

Z
Z, KΓZ

(t∗, t∗) − γ>ΓZ
(t∗)Σ−1

Z
γΓZ

(t∗)
)
, where µΓZ

(t∗), γΓZ
(t∗),

and KΓZ
(t∗, t∗) are computed from (10) and (11). Algorithms 1 and 2 in the Supplement,

Section S4, present further details for posterior sampling. Next, we turn to numerical ex-

periments and data analyses. Codes required for reproducing and emulating the analyses

presented in the manuscript are produced for the R statistical programming environment and

available for download in the public domain at https://github.com/arh926/spWombling .

5 Simulation Experiments

5.1 Data generation

The proposed differential processes are not observed in reality, but are induced by an observed

spatially indexed parent process. To evaluate statistical learning of the curvature process we

perform simulation experiments within a setup where true values of the differential process

and wombling measures are available. We consider locations s = (s1, s2)> ∈ R2 over the

unit square [0, 1] × [0, 1] ⊂ R2. We generate synthetic data from two distributions: (a)

Pattern 1: y1(s) ∼ N(10[sin(3πs1) + cos(3πs2)], τ 2); (b) Pattern 2: y2(s) ∼ N(10[sin(3πs1) ·

cos(3πs2)], τ 2), where the value of τ 2 = 1. Figure 1 presents spatial plots of the generated
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Figure 1: Spatial plots for synthetic patterns, from Pattern 1 (left) and Pattern 2 (right).
Scales are shown in the legend alongside.

synthetic response from these patterns. The rationale behind selecting these distributions

is: (i) synthetic data is more practical and not from the model in (13), and (ii) true gradient

and curvature can be computed at every location s.

The synthetic patterns chosen feature two different scenarios that may arise. In the first

pattern expressions for differentials along the principal directions e1 = (1, 0)> and e2 =

(0, 1)> are functions of either s1 or s2, ∇µ1(s) = 30π(cos(3πs1),− sin(3πs2))>, ∇2µ1(s) =

−90π2diag{sin(3πs1), cos(3πs2)}. The curvature along s1 does not influence curvature along

s2, (∇2µ1(s))12 = 0 for all s. While∇µ2(s) = 30π(cos(3πs1) cos(3πs2),− sin(3πs1) sin(3πs2))>,

∇2µ2(s) = −90π2M(s), where M(s) is a 2 × 2 matrix with, m11 = sin(3πs1) cos(3πs2),

m12 = m21 = cos(3πs1) sin(3πs2) and m22 = sin(3πs1) cos(3πs2) with differentials being

functions of both s1 and s2 and (∇2µ(s))12 6= 0 for some s. While setting up the experiments

we vary L ∈ {100, 500, 1000} with 10 replicated instances under each setting.

5.2 Bayesian model fitting

We fit the model in (14) with only an intercept allowing the spatial process to learn the

functional patterns in the synthetic response. We use the following hyper-parameter values

in (14): aφ = 3/max ||∆||, bφ = 30, aσ = 2, bσ = 1, aτ = 2, bτ = 0.1 µβ = 0 and Σβ = 106Ip.

These choices comprise reasonable weakly informative priors. While a Uniform(2, 3) prior on

ν can be specified (and was implemented as part of this experiment) to ensure the existence
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of the curvature process, here our choice of scales in the data generating patterns ensured

that ν = 5/2 provided the best model fit when compared with values of ν ∈ {1/2, 3/2, 5/2}.

Hence, we present the results with ν = 5/2.

The parameter estimates for θ are computed using posterior medians and their high-

est posterior density (HPD) intervals (Chen & Shao 1999, Plummer et al. 2015). For each

replicate, we assess our ability to estimate the local geometry of the resulting posterior sur-

face. For this we overlay a grid spanning the unit square. We perform posterior predictive

inference for the differential processes at each grid location following Section 2. Posterior

predictive medians (accompanied by 95% HPD intervals) summarize inference for the differ-

ential processes over the grid locations (Section 5.4 offers supplementary analysis).

5.3 Bayesian wombling with curvature processes

For wombling with curvature processes, or curvature wombling, we focus on locating curves

that track rapid change within the simulated random surfaces. For example, consider the

surface produced by the first pattern. If a curve is provided to us, we can evaluate the

posterior distribution of the average or total curvature wombling measures to assess their

statistical significance. On the other hand, without a given curve, we consider three different

approaches for constructing them from a boundary analysis or wombling perspective: (a)

level curves: Cy0 = {s : Y (s) = y0}: Bayesian wombling literature finds that curves parallel

to contours often form wombling boundaries (see, e.g., Banerjee & Gelfand 2006) and level

curves on a surface are parallel to local contours by definition; (b) smooth curves: produces

a smooth curve using Bézier splines (see, e.g., Gallier & Gallier 2000) from a set of annotated

points that are of interest within the surface; and (c) rectilinear curves: produces a recti-

linear curve joining adjacent annotated points of interest within the surface using straight

lines, performs curvature wombling using a Riemann sum approximation (see (S1) in the

Supplement). Curves of types (b) and (c) allow the investigator to specify a region of in-
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Figure 2: (left) shows color coded directional gradients for segments, (center) shows color
coded directional curvature for segments in the direction normal to the curve, (right) shows
curves selected for performing curvature wombling. green indicates a positive significance,
cyan indicates negative significance and white indicates no significance.

terest that house possible wombling boundaries. For the surface realization produced by

Pattern 1, we consider four different types of curves on the response surface, (A) a closed

curve enclosing a trough corresponding to a level curve, Cy0=−18, (B) a closed curve enclosing

a peak corresponding to a level curve, Cy0=+18, (C) a closed curve that outlines a contour

corresponding to a level curve, Cy0=+15 and (D) an open curve along a contour constructed

using a Bézier spline. These curves are marked in Figure 2c.

Curvature wombling is performed using methods outlined in Section 3. Referring to

the discussion on rectilinear approximation, for each curve, given a partition, we compute

ti and ui. Combining the segments produces a vector t and a matrix of directions, U that

represents the curve. Algorithm 2 in the Supplement, Section S4 devises efficient computation

using t and U. The total (and average) wombling measures Γ(C) are sampled from their

posteriors using (12). For curves A, B, C and D, we use partitions with sufficiently small

norms (|P |) to achieve accuracy (3.99 × 10−3, 3.97 × 10−3, 4.42 × 10−3 and 2.66 × 10−2

respectively). One and two dimensional line integrals (refer to (10) and (11)) are computed

via quadrature using grids of size 10 on [0, ti], and size 100 on [0, ti] × [0, ti] respectively,

for i = 1, 2, . . . , nP . The median of sampled Γ(C̃P ) is our estimated wombling measure for

the curve. Significance at the curve-segment level is assessed based on the inclusion of 0
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Table 1: Results from curvature wombling performed on curves A, B, C and D as shown
in Figure 2. The estimated average directional gradient and curvature are accompanied by
their respective HPD intervals in brackets. HPD intervals containing 0 are marked in bold.

Curves (C)
Average Gradient (Γ(1)(C)) Average Curvature (Γ(2)(C))

True Estimated True Estimated

Curve A -61.54
-64.97

731.94
768.03

(-92.37, -38.57) (599.30, 913.70)

Curve B 40.85
49.19

-808.04
-850.84

(20.45, 73.12) (-1066.98, -630.09)

Curve C 84.03
85.65

-558.58
-504.98

(59.81, 109.97) (-767.55, -241.61)

Curve D -110.84
-113.27

11.32
-94.64

(-153.23, -77.01) (-386.94, 233.78)

within the HPD intervals. Our design allows us to compute true values of average wombling

measures for each rectilinear segment in the curve. They are computed using, µtrueΓ (C̃P ) =

(
∑nP

i=1 ti)
−1
(∑nP

i=1

∫ ti
0

u⊥i
>∇µ1(s(t)) dt,

∑nP

i=1

∫ ti
0

u⊥i
>∇2µ1(s(t))u⊥i dt

)>
. We compute HPD

intervals for the wombling measures at the segment level. Coverage probabilities (CPs) are

then constructed by aggregating coverage of true values by HPD intervals over segments.

Curve A encloses a trough and a local minima for the surface, while B and C enclose

peaks and local maximums (referring to corresponding locations in Figures S8c and S9c).

Along all segments of A we expect negative gradients owing to the decreasing nature of the

response in that region, while for B and C we expect positive gradients. Each of them would

be expected to yield significant wombling measures for gradients. Referring to the Laplacian

surface (see Supplement, Figures S8e and S9e) A, B, and C are located in regions manifesting

rapid change in the gradient surface, implying they should yield large positive (curve A) or

negative (curves B and C) curvature, forming curvature wombling boundaries. These are all

aligned with our findings presented in Table 1, which presents measures of quality assessment

for wombling. The magnitude and sign of wombling measures also allow us to differentiate

between the type of curvature for the different wombling boundaries. For instance, B is

located in a region of higher convexity compared to C, while the nature of convexity for

regions enclosed by them are different compared to A. Plots in Figure 2 (left and center)

show line segment level inference for average wombling measures. Arrows indicate segments
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which were not significant with respect to gradient or curvature, while regions of significance

are color coded. D is located in a “relatively flat” region of the surface (see Figures S8e and

S9e) and is expected to have gradients but no curvature, which aligns with results shown in

Table 1. We conclude by noting that the true values, µtrueΓ (C) of the wombling measures for

the curves considered, are all covered by the estimated HPD intervals for respective curves.

Additionally, at the line segment level we achieved a CP of 1.0 across all curves.

5.4 Supplementary analysis

We present additional results in the online supplement. Tables S1 and S2 present parameter

estimates, measures of goodness of fit for the fitted process, and assessment of derivative

process characteristics for each pattern considered. We compute root mean square errors

(RMSE) across observed locations averaged over 10 replicates for each sample size setting

for the fitted process Ŷ (s) = β̂0 + Ẑ(s), and ∇̂Y (s), ̂vech(∇2Y (s)). We report standard

deviations across replicates. With increasing number of observed locations we are able to

effectively learn the underlying process and induced differential processes. Figures S4, S5, S6

and S7 present spatial plots of posterior medians of gradient and curvature processes, for L =

100 locations. These plots demonstrate the effectiveness of our methods in learning about the

differential processes from the underlying patterns. Similarly plots shown in Figures S8, S9,

S10 and S11 demonstrate the same for derived quantities and operators of LY (s)—principal

curvature (eigenvalues), Gaussian curvature (determinant) (see, e.g., Spivak 1999, Do Carmo

2016), divergence and Laplacian, which pertain to geometric analysis of curvature for the

random surface resulting from the underlying patterns. Statistical significance is assessed at

every grid point by checking the inclusion of 0 in their HPD intervals. Significantly positive

(negative) points are color coded. We compute average CPs at every grid location to measure

the accuracy of our assessment. These CPs are then averaged over replicates. We observed

high CPs across the grid for parent and differential processes. Figures S12 and S13 compare
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observed against estimated differential processes coupled with their HPD regions.

6 Applications

Frameworks developed for differential assessment and boundary analysis in spatially indexed

response are applied to multiple data sets with the aim of locating curvature wombling

boundaries that track rapid change in response. The chosen data arise from varied areas of

scientific interest, we briefly describe the origin and significance of each with respect to our

methods before performing our analysis. Response is modeled using the hierarchical model

in (13). Prior specifications used in (14) are, φ ∼ Unif (3/maxs∈S ||∆||, 300), σ2 ∼ IG(2, 1),

τ 2 ∼ IG(2, 1) (mean 1, infinite variance), β ∼ N(0, 106Ip), p being the number of covariates

and ν = 5/2 for the Matérn kernel ensuring existence of the differential processes.

Boston Housing: The Boston housing data (see, e.g., Harrison Jr & Rubinfeld 1978) was

collected by the United States Census Service featuring median house prices for tracts and

towns in Boston, Massachusetts area. The purpose was to study heterogeneity in the market

caused by the need for residents to have clean air. To study such heterogeneity, modern

equitable housing policies are incorporating statistical modeling to quantify such behavior.

Often they are a result of unobserved effects of rapidly shifting socioeconomic conditions

(see, e.g., Hu et al. 2019). Within a spatial map this manifests as neighboring regions

of disparity. Figure 3 shows two such regions: high priced including Downtown Boston,

Cambridge, Newton, Wellesley, Brookline etc. and low priced including South and East

End. For effective policy implementation, identifying such regions becomes crucial. Spatial

variation in the median house prices is evidenced in Figure 4. Curvature wombling effected

on the house price surface would locate regions that feature such change.

The data contains median house price values for 506 census-tracts along with demographic

data. Latitude-longitude centers of the census-tracts are used for spatial referencing. To

allow Z(s) to capture all the spatial variation, we include only an intercept in the model.
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Figure 3: Plots showing (left) probability density of median house prices (in USD 1000)
(right) spatial plot of median owner occupied house prices in Boston.

Table 2: Posterior Estimates from the hierarchical linear model in (13) to Boston housing

Parameters (θ) Posterior Estimates (θ̂) HPD

φ 0.96 (0.83, 1.11)
σ2 55.18 (43.91, 68.06)
τ 2 14.89 (11.77, 18.71)
β0 25.58 (24.29, 27.34)

Table 2 shows posterior estimates and HPD intervals for process parameters. We observe

that σ2

σ2+τ2
≈ 78.75%—larger portion of total variance being explained by varying location.

Modeled spatial variation in the response is shown in Figure 3 (left). Significance for

the estimate, Ẑ(s), is assessed using the inclusion of 0 in its posterior HPD. Using pos-

terior samples we estimate the derivative processes for Z(s). A grid, (G = {sg : sg ∈

convex− hull(S)}, containing 1229 equally spaced locations) is overlaid over the region

with the same purpose. To effect posterior surface analysis on the estimated surface we use

Figure 4: Plots (left to right) showing fitted process, divergence and Laplacian for the median
house price surface.
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Figure 5: Curvature wombling on the Boston Housing Data.

posterior predictive distributions of div(Z) and ∆(Z) revealing zones that manifest rapid

change in response and gradients respectively. They are shown in Figures 4 (center and

right). Next, we focus on performing curvature wombling on the estimated surface. Strate-

gic posterior surface analysis is used to locate level-sets of interest within the surface that

could possibly contain wombling boundaries. We start with contours shown in Figure 5 (left

column). Boundary 1 (2) bounds a region where the fitted process has positive (negative)

significant estimates. Evidently, the chosen curves should house significant gradients along

most segments, but significant curvature should only be detected for segments located at

the center (lat-long: (42.18, 42.23) × (−71.05,−70.05)) of the surface in Figures 4 (center

and right). Estimated average wombling measures for these curves are shown in Table 3.

Figures 5 (center and right) correspond to segment level posterior inference for the curves,

line segments with significant directional differentials are indicated in bold. Summarizing,

we observe that the gradient, curvature and posterior surface analysis allow us to highlight

towns (with census-tracts) within Boston that exhibit heterogeneity in prices. Curvature

wombling performed on the surface allows us to delineate zones that house such heterogene-

ity. For instance, towns located within boundaries 3 (South and East End) and 6 (Newton
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and Brookline) show significant change in price gradients, compared to towns within bound-

aries 4 (Lincoln and Weston) and 5 (Wellesley and Dover). These findings can be verified

referring back to price dynamics for real estate in Boston during 1978 (see e.g., Schnare &

Struyk 1976). The same regions are scrutinized for studying segmentation—towns within

curves 1 and 3 are accessible to lower income groups willing to sacrifice air quality.

Table 3: Curvature wombling measures for boundaries in Boston housing accompanied by
corresponding HPD intervals in brackets below. Estimates corresponding to HPD intervals
containing 0 are marked in bold.

Curve (C) Average Gradient (Γ
(1)

(C)) Average Curvature (Γ
(2)

(C))

Boundary 1
-8.91 10.14

(-11.31, -6.65) (2.84, 18.34)

Boundary 2
6.18 -0.09

(4.75, 7.49) (-3.45, 3.35)

Boundary 3
-6.47 12.69

(-9.74, -3.27) (2.65, 22.48)

Boundary 4
6.92 1.26

(4.63, 9.19) (-5.04, 7.14)

Boundary 5
5.47 1.36

(2.95, 7.86) (-4.33, 7.42)

Boundary 6
11.82 -16.27

(7.28, 16.14) (-26.68,-6.57)

Meuse River Data: The Meuse river data features in Pebesma et al. (2012). It provides

locations of topsoil heavy metal concentrations, along with soil and landscape variables

at the observed locations, collected in a flood plain of the river Meuse, near the village

of Stein, Netherlands. The heavy metal concentrations recorded include Cadmium (Cd),

Copper (Cu), Lead (Pb) and Zinc (Zn). A distinguishing feature is the naturally occurring

boundary—the Meuse. From a boundary analysis standpoint we are interested in examining

differentials in heavy metal concentrations along the flood plain of the river to understand

the heterogeneous effect of the river on the topsoil. The soils of the floodplain are commonly

used for agriculture. Crops grown on the floodplain of the river banks of the Meuse may

be consumed by man and/or livestock. The spatial variation in heavy metal concentration

can be seen in Figure 6. The path of the Meuse river is shown in each of the spatial

plots. Evidently, the heavy metal concentrations decreases with increasing distance from
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Figure 6: Plots showing heavy metal concentrations in the topsoil of a flood plain at 155
locations for (from left to right) Cadmium (Cd), Copper (Cu), Lead (Pb) and Zinc (Zn) (in
mg/kg of soil).

the river. We model the concentrations as independent Gaussian processes. Covariates used

are relative elevation above local river bed (elev, measured in meters), organic matter (om

measured in kg/(100kg) of soil), distance to Meuse (dist), frequency of flooding, soil type

(soil), and lime content in soil (p = 9). Table 4 shows the posterior estimates of process

parameters and model coefficients, β for each of the heavy metals in question. We observe

that σ2/(σ2 + τ 2) ≈ 62.45%, 99.79%, 52.09%, 62.29% for Cd, Cu, Pb and Zn respectively,

indicating larger portions of total variation being explained by spatial heterogeneity, except

for Pb. Variation in Cd and Zn concentration is significantly affected by elevation, organic

matter and flooding frequency, while variations in Cu and Pb concentration is significantly

affected by elevation, organic matter and flooding frequency and lime content. The estimated

residual surface is shown in Figure 7 (left) for Cd concentrations. We observe significant

positive gradients with varying curvature depending on segments of the river bed for all

heavy metals. We perform curvature wombling on the Meuse using the residual surface, Z.

The results of curvature wombling for cadmium are shown in Figure 7. Results and plots for

other metals can be found in the Supplement, Section S7, Figure S14. The accompanying

wombling measures are shown in Table 5. We observe sufficient heterogeneity in the signs

of the wombling measures, yielding contiguous positive (negative) segments. For example,

in Cd concentration, boundaries located for average gradients in the northern and southern

region are positive, as opposed to boundaries located in the north western region. Therefore,
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Table 4: Posterior estimates of process parameters and covariates for the Meuse river data
accompanied by their corresponding HPD intervals in brackets below. Effects with HPDs
containing 0 are marked in bold.

Parameters (θ) Cadmium (Cd) Copper (Cu) Lead (Pb) Zinc (Zn)

φ
0.0379 0.1138 0.0399 0.0472

(0.0207, 0.0618) (0.0871, 0.1471) (0.0131, 0.1900) (0.0230, 0.0744)

σ2 2.9566 3.2044 0.9303 38.3538
(1.2803, 5.2227) (2.3955, 4.0892) (0.2763, 1.7641) (16.7815, 65.1450)

τ 2 1.7771 0.0067 0.8555 23.2226
(0.9107, 2.6328) (0.0012, 0.0244) (0.0010, 1.2280) (9.3743, 35.6867)

Intercept
9.4973 4.8503 6.1120 37.1315

(5.9750, 13.3704) (3.1392, 6.8308) (3.4615, 8.1910) (25.0903, 53.0870)

elev
-0.7672 -0.4065 -0.5413 -2.8781

(-1.2531, -0.3574) (-0.7418, -0.1656) (-0.7853, -0.1442) (-4.7805, -1.2834)

om
0.4011 0.4293 0.3434 0.8606

(0.2616, 0.5233) (0.3276, 0.4728) (0.2490, 0.4253) (0.3681, 1.3166)

dist
-0.0033 -0.0025 -0.0011 -0.0081

(-0.0061, 0.0000) (-0.0043, -0.0014) (-0.0029, 0.0006) (-0.0197, 0.0038)

ffreq (=2)
-1.4176 -2.4727 -0.8483 -4.3182

(-2.3202, -0.3432) (-3.1794, -1.6716) (-1.6109, -0.2598) (-7.9184, -0.6220)

ffreq (=3)
-0.7322 -1.4298 -0.1865 -3.3159

(-2.0520, 0.6248) (-2.4443, -0.5157) (-1.2972, 0.6861) (-7.9307, 1.9128)

soil (=2)
-0.3337 0.2236 0.5988 -2.2213

(-1.4661, 0.7491) (-0.7248, 0.9799) (-0.0345, 1.2956) (-6.1446, 2.0831)

soil (=3)
-0.3884 0.6344 0.3707 -2.9922

(-2.0891, 1.2628) (-0.2309, 1.8474) (-0.7108, 1.4029) (-9.0918, 3.6289)

lime (=1)
0.5752 1.3223 0.7759 -0.4759

(-0.3509, 1.4341) (0.7152, 1.9427) (0.1173, 1.4645) (-3.9057, 2.6510)

while displaying the wombling measures, in Table 5, we separate them by their sign.

We conclude that effects of river Meuse on regions of the flood plain exhibit signifi-

cant heterogeneity when considered across heavy metals. Compared to other metals, Pb

concentrations are limited to northern regions of the flood plain. Concentrations of Cd

and Zn concentrations along the river are similar. Compared to the northern region, in

the northwestern region Zn concentrations decrease significantly as we move inland. Studies

corroborating such evidence can be found in Leenaers et al. (1988) and Albering et al. (1999).

7 Discussion and Future Work

We developed a fully model-based Bayesian inferential framework for differential process

assessment and curvature-based boundary analysis for spatial processes. Introducing the

directional curvature process and its associated inferential framework supplements the direc-
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Figure 7: Plots showing results for curvature wombling on the Meuse river for Cadmium
(Cd) concentration. Plots showing (left) the resulting fitted process (center) the contiguous
segments that display significant gradients (right) the contiguous segments with significant
curvature.

Table 5: Curvature wombling measures for the Meuse, separated by zones of positive and
negative signs, they are accompanied by their corresponding HPD intervals in brackets below.

Wombling Measures Cd Cu Pb Zn

Γ
(1)

(> 0)
0.0510 0.1273 0.0375 0.1984

(0.0298, 0.07401) (0.0913, 0.1729) (0.0019, 0.1561) (0.0876, 0.3162)

Γ
(1)

(< 0)
-0.0400 -0.2561 – -0.1890

(-0.0635, -0.0170) (-0.3187, -0.1997 ) – (-0.2967, -0.0669)

Γ
(2)

(> 0)
0.0074 – – 0.0422

(0.0019, 0.0158) – – (0.0111, 0.0879)

Γ
(2)

(< 0)
-0.0078 -0.1247 -0.0039 -0.0473

(-0.0223, -0.0024) (-0.1979, -0.0860) (-0.1076, -0.0006) (-0.1114, -0.0095)

tional gradients with inference for their rates of change, while its induction into the folds of

Bayesian curvilinear wombling allows for further characterization of difference boundaries.

Adopting a Bayesian hierarchical model allows for Gaussian calibration when characteriz-

ing points, regions and boundaries within a surface. This framework is widely applicable;

our applications arise from selected disciplines indicating the utilities of mapping curvature

process boundaries to understand spatial data generating patterns. Substantive case studies

will be reported separately.

Several avenues hold scope for future developments. A more generalized theoretical

framework can be developed for studying joint behavior of the principal curvature (direc-

tion of maximum (or minimum) curvature) and the aspect (direction of maximum gradi-

ent) (see, e.g., Wang et al. 2018) leveraging dependent circular uniform distributions (see,
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e.g., Kent et al. 2008). We offer some brief remarks. To obtain the direction of maxi-

mum curvature for a spatial surface, we solve max
u∈R2

∣∣u>∇2Y (s)u
∣∣, such that ||u|| = 1, at an

arbitrary point s. Using Lagrange multipliers and denoting κ(u) = |u>∇2Y (s)u|, define

O(u) = κ(u)− λ(||u||2 − 1) hence, ∂O(u)/∂ui = κ(u)−1(∇2
iiY (s)ui +∇2

ijY (s)uj)− λui = 0,

i, j = 1, 2. With u2/u1 = tan θpc, eliminating λ we get tan θpc =
∇2

22Y (s) tan θpc +∇2
12Y (s)

∇2
11Y (s) +∇2

12Y (s) tan θpc
.

Defining h1 = h1(s) = (∇2
11Y (s) − ∇2

22Y (s))/∇2
12Y (s) given ∇2

12Y (s) 6= 0 and solving

θpc = tan−1 1
2

[
−h1 ±

√
h2

1 + 4
]
. If ∇2

12Y (s) = 0 then, ∇2Y (s) is diagonal and θpc cor-

responds to the direction of max{∇2
11Y (s),∇2

22Y (s)}. We propose that Θ = (θasp, θpc)
>

follows a dependent circular uniform distribution over [0, 2π] × [0, 2π]. Further develop-

ments with circular regression methods can proceed to examine the effect of covariates on Θ.

Multivariate extensions would involve formulating these differential processes on arbitrary

manifolds. This requires simulating a Gaussian process on manifolds and inspecting the

covariant derivative. Bayesian curvilinear wombling could then be implemented on curves of

interest to the investigator. This would not only involve an inferential framework for normal

curvature, but also geodesic curvature for such curves. Spatiotemporal curvature processes

can build upon Quick et al. (2015) to study evolutionary behavior of the curvature processes

with respect to variations in the response across time. Finally, we remark that while there

have been substantial recent developments in scalable spatial processes for massive data

sets—a comprehensive review is beyond the scope of the current article (see, e.g., Heaton

et al. 2019)—not all scalable processes admit the correct degree of smoothness for curvature

processes to exist. Constructing scalable processes for curvilinear wombling, and subsequent

inference, remains a problem of interest in the wombling community.

Supplementary Materials

The following supplement includes additional theoretical derivations, computing details, ad-

ditional simulation experiments and wombling for Northeastern US temperatures.
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