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Snowball sampling is a non-probabilistic sampling method, widely used in the 

social sciences both for lacking the requirement of a frame, unlike many 

probabilistic methods, and for its ability in reaching hard-to-reach populations 

(NOY, 2008; HECKATHORN, 2007; GOODMAN, 1961), such as drug users 

(FRANK & SNIJDERS, 1994), the homeless (CLATTS, DAVIS & 

ATILLASOY, 1995) and queer people (BUENTING, 1992). 

Formally, we can define snowball sampling thus: an initial sample is selected 

from a finite population. A referral request for other people belonging to the 

population of interest is made to all the individuals in the sample. All of the 

referrals that are not already part of the sample form the first wave (or first 

stage). For every individual of the first wave, the request is repeated and so on, 

until the stop condition set by the researcher is met: this can be the number of 

waves, the sample size or something qualitative, such as when responses present 

little variation. The method gets its name because, similar to a snowball rolling 

down a hill, the sample also increases in size over time (THOMPSON, 2014; 

GOODMAN, 1961). 

Due to it being a non-probabilistic method, formal equations for the standard 

error of the mean do not exist, making analyses more complex. While there is 

a class of estimation methods (called respondent-driven sampling estimators or 

RDS estimators) that claim to be able to estimate the standard errors 

(HECKATHORN, 2011), these methods rely on a number of very heavy 

assumptions that are hardly met in practice (WEJNERT, 2009). 

This study bypasses these issues by making use of computational statistics, in 

particular Monte Carlo simulations, which allows for approximate estimations 

based on different controlled scenarios in order to improve the understanding 

of the sampling method. Monte Carlo simulations are methods based on 

generating different independent samples to obtain approximate answers to 

stochastic problems, with their precision being related to the number of 

samples generated (iterations), such that the higher is the number of samples, 

the more precise the estimates are (BRANDIMARTE, 2014). 

For this, random graphs (also called Erdős-Rényi graphs or Gilbert graphs) 

were used to propose/simulate populations. Graphs are generic mathematical 



models used to represent relationships (edges) between elements (nodes) of 

various types, such as flights between airports, sales and purchases across 

different enterprises, and, more famously, social networks (BARABÁSI, 2016). 

Gilbert graphs are defined by the amount of nodes N and the probability of 

connection p between them, with the number of connections of the graph 

following a Binomial(N, p). By manipulating the values for N and p, we can 

generate populations of different sizes and connection densities to better model 

real networks. However, real networks generally have two qualities: (i) they are 

sparse, that is, have an amount of connections much smaller than the maximum 

amount possible; and (ii) they have hubs, nodes with many more connections 

than the average, such as for example, a popular individual. While Gilbert 

graphs may fulfil the first condition, depending on the value of p, it cannot 

generate hubs (BARABÁSI, 2016). 

In order to better mimic real applications of snowball sampling, in which 

individuals do not indicate all people they know belong to the population of 

interest, we defined a probability of indication (𝑝𝑖) that varies from person to 

person. Conceptually, this probability of indication is influenced by multiple 

factors, some inherent, like personality, and others relational, like the level of 

trust with the field agents. This mathematical abstraction is unmeasurable in 

reality but allows for more sophisticated studies. 

Alongside populations created by using random graphs, a variable of interest 

𝑦 ~𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜆 = 1 13⁄ ) was appended to these, meant to mimic a 

generic income/expense variable, which are also non-negative and asymmetric. 

This variable has no association with the graphs’ configurations. 

Using R (R Core Team, 2023), along with the igraph (CSARDI et al., 2006), 

doParallel, parallel and foreach (WESTON et al., 2020) libraries, we outlined two 

studies as well as a convergence check for the estimates. Both studies use the 

same y variable, conjugated with different graphs, as well as the same desired 

sample size (𝑛 = 650), number of nodes (𝑁 = 10000) and number of 

iterations (𝐴 = 10000). 

Each iteration functions similarly, on either study: (i) we take snowball samples 

of every population defined for the study; (ii) we calculate the mean and 

standard error (assuming simple random sampling without replacement) and 

store the values on an array; and (iii) completed all iterations, we calculate the 

Monte Carlo estimates using the previously mentioned array. 

The first study explores the effect of the connection density, manipulating the 

probability of connection while maintaining the same number of nodes, 

creating a set of population graphs with probability of indication 



𝑝𝑖~𝐵𝑒𝑡𝑎(9,3) and probability of connection p = { 0.001, 0.012, 0.023, 0.034, 

0.045, 0.056, 0.067, 0.078, 0.089, 0.1}. 

The second study focuses on the probability of indication, using the values 

outlined in Table 1 and a graph population with 10000 nodes and probability 

of connection p=0.01. 

Table 1 – Parameters used for the second simulation study 

Average (𝑝𝑖) α β 

0.1 1/3 

3 

0.2 3/4 

0.3 9/7 

0.4 2 

0.5 3 

0.6 4.5 

0.7 7 

0.8 12 

0.9 27 

 

We found that, for this scenario, the connection density affects the average 

sample size exponentially, with the average sample size reached being modelled 

by the equation found in Figure 1. This behaviour indicates that the more 

connected a population is, the better will be the capacity of reaching the desired 

sample size. However, the sample size is limited by the amount of connections, 

which is something that the researchers may not be able to alter in the short-

term. 

Figure 1 –Average sample size reached (SS) by probability of connection (p) 

 



The effect of the probability of indication on the average sample size, 

meanwhile, behaves linearly instead of exponentially (Figure 2). Though less 

influential in the sample size reached, the probability of indication can be altered 

in the short-term by for example, offering incentives for indicating and 

guaranteeing anonymity. 

Figure 2 –Average sample size reached (SS) by probability of indication (pi) 

 

Using the estimates for standard error of the mean (both assuming simple 

random sampling and Monte Carlo estimation), we also calculated Skinner’s 

misspecification effect (meff), a measure which allows us to quantify the error 

committed when assuming simple random sampling for the estimation. We 

separated the cases into two groups with one using whichever sample size was 

reached, labelled “complete”, and another using at most the desired sample size 

chosen previously (650 individuals), which was labelled “restricted”, to allow 

for comparisons due to the difference between sample sizes. 

For both studies, all values of meff were below 1 (Figure 3), meaning that the 

bias committed was negative. It also means that the formula for the standard 

error of the mean assuming simple random sampling consistently overestimates 

the standard error of the mean and therefore could be taken as an upper bound 

for the standard error under snowball sampling for this particular scenario. 

 

 



Figure 3 –Misspecification effects by probability of connection (p) and 

probability of indication (pi) for different sample types 

  

 

This is only a pilot study focusing on estimating the mean of a continuous 

variable that is unrelated to how a social network organizes itself, built upon 

graphs that, while sparse, do not present hubs. Therefore, these results are not 

generalizable into common usage and further studies are required. 

Some studies are underway considering other aspects not contemplated by this 

pilot, such as the effect of altering the size of the initial sample, the inclusion of 

a probability of response (including a scenario of independence and a scenario 

of association with the probability of indication) and estimating proportions. 

We also seek to study scenarios where the variable of interest is related to how 

the network distributes itself and usage of more complex graphs that better 

represent real networks, like Barabási-Albert graphs. 
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