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Abstract—We propose a semiparametric multitaper test for the
detection of modulated line components where the modulation is
assumed to be created by a polynomial of degree 𝑃. This proposed
test is based on an aggregation of 𝐹-tests, which are themselves
a modification of the specific 𝐹-test described in [2], where the
aggregation is over different multitaper orders. We derive the
asymptotic distribution of the 𝐹-test statistic, and via simulation,
we approximate the 𝐹-test size needed to give a pre-specified level
of the aggregated test. This aggregated test is compared to the
𝐹-test in [2] and to our modified 𝐹-test via simulation in terms
of the probability of detecting a frequency modulated signal.

Index Terms—frequency modulation, 𝐹-test, aggregated test,
time series, multitaper

I. INTRODUCTION

Detecting periodic signals in noise is an increasingly impor-
tant problem in many fields. The non-parametric multitaper
spectral estimator and the Harmonic 𝐹-test created in [5]
are well known for their ability to detect periodic signals
in stationary noise. However, under conditions of the carrier
frequency being slowly modulated by a polynomial of degree
P, the Harmonic 𝐹-test is often unable to detect the carrier
frequency of the frequency modulated (FM) signal.

We propose a semi-parametric test to detect an FM line
component modulated by a polynomial up to a given degree
𝑃. This test is a combination of a modification of the test in
[2], with the modified being denoted by 𝐹4 in the following,
and an aggregation of the 𝐹4 test statistics over a range of
multitaper orders, which we denote by 𝑇𝑎. The aggregate test
𝑇𝑎 is shown to be more effective under broader conditions
than the one constructed in [2], which is in turn based on the
test given in [6]. The test statistics in [2] and those proposed
in this paper are constructed within the multitaper framework.
However, whereas the test statistic in [2] uses the Discrete
Prolate Spheroidal Sequences (DPSS) [4] as tapers due to
their optimal energy concentration properties, we adopt the
Sinusoidal tapers [3] as these provide optimal bias properties
as well as a (roughly four-fold) increase in computational
efficiency due to their closed form. Along with the ability to
downweight specific regions of the bandwidth; this is useful
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for providing a mechanism for controlling Type I error in our
new aggregate test.

The remainder of this paper is organized as follows. In
Section II, we review the test statistic from [2], which is
denoted by �̃�3 in that work, and this. In Section III, we propose
and discuss our modification of the �̃�3 test statistic, denoted
by 𝐹4, and show that the asymptotic distribution of 𝐹4 is the
same as that of �̃�3. In Section 19, we propose our aggregate
test statistic, denoted by 𝑇𝑎, which aggregates the 𝐹4 test
statistic over multitaper orders. In Section V, we compare, via
simulation, the performance of the 𝑇𝑎, 𝐹4 and �̃�3 test statistics
in terms of the probability of detecting a frequency modulated
signal, at a fixed significance level of 1/𝑁 , where 𝑁 is the
length of the time series. In Section VI, we give concluding
remarks and directions for future work.

II. DERIVATION OF �̃�3

It is necessary to speak about �̃�3 before proceeding to the
proposed new test statistic 𝐹4. Let X = {𝑋𝑡 }, 𝑡 = 0, . . . , 𝑁 − 1
denote a time series, and assume that X is of the form

𝑋𝑡 =

𝑀∑︁
𝑚=0

`𝑚 cos
(
2𝜋 𝑓𝑚𝑡 + 2𝜋

∫ 𝑡

0
𝜙𝑚 (𝜏)𝑑𝜏

)
+ 𝑍𝑡 , (1)

where 𝑍𝑡 is a stationary noise process, and 𝜙𝑚 (𝜏) :=∑𝑃
𝑝=0 𝑎𝑝𝜏

𝑝 is a polynomial of degree at most 𝑃 whose range
in the time span of the data is assumed to lie in a given
bandwidth around 0. We desire to detect the 𝑓𝑚, the carrier
frequencies, of the frequency modulated signals. Assuming the
𝑀 carrier frequencies 𝑓𝑚 are spaced apart at least the reso-
lution bandwidth, without loss of generality we may assume
there is only a single modulated signal. We do so in this paper
and adopt the notation `, 𝑓 and 𝜙(𝑡) for the amplitude, carrier
frequency, and modulating function for the single modulated
signal. The test statistic �̃�3 is created by first constructing
the length 𝑁 , complex-valued, standard inverse vector of the
time series at a frequency 𝑓 , i.e., Z := VY = U + 𝑖W and
its derivative ¤Z := ¤VY = ¤U + 𝑖 ¤W, where Y, Eqn. (14), is the
vector of 𝐾 (complex) eigencoefficients at frequency 𝑓 , V is
the 𝑁 × 𝐾 matrix of DPSS tapers, ¤V is the time derivative of
the DPSS [1], and 𝐾 is the number of tapers used (we have
suppressed the dependence on 𝑓 in the preceding notation).
The instantaneous frequency of the time series X at each time



𝑡 in a prespecified band of width 2𝑊 around a frequency 𝑓 is
given by (see [2])

𝜓(𝑡; 𝑓 ) :=
𝑈 (𝑡; 𝑓 ) ¤𝑊 (𝑡; 𝑓 ) − ¤𝑈 (𝑡; 𝑓 )𝑊 (𝑡; 𝑓 )

2𝜋
(
𝑈2 (𝑡; 𝑓 ) +𝑊2 (𝑡; 𝑓 )

) , (2)

where 𝑈 (𝑡; 𝑓 ) is the 𝑡th component of U, and similarly for
¤𝑈 (𝑡; 𝑓 ), 𝑊 (𝑡; 𝑓 ), and ¤𝑊 (𝑡; 𝑓 ). The distribution of 𝜓(𝑡; 𝑓 ) has

been shown asymptotically (as 𝑁 → ∞, 𝑊 → 0) to be

𝜓(𝑡; 𝑓 ) ∼ Laplace(0, 1)
𝜒2

2
(3)

up to a proportionality factor, when X is purely white noise.
Additionally 𝜓(𝑡; 𝑓 ) can be scaled so it has the same distri-
bution at each time 𝑡, which allows for it to be very well-
behaved even though it is a non-linear function of a non-
stationary process. Computing the eigencoefficients of this new
instantaneous frequency series

𝚿𝑘 (a; 𝑓 ) :=
𝑁−1∑︁
𝑡=0

𝑣
(𝑘 )
𝑡 𝜓(𝑡; 𝑓 )𝑒−𝑖2𝜋a𝑡 , (4)

where a (𝑘 )𝑡 is the 𝑘th data taper, we need only observe the case
of a = 0 due to the concentration of the polynomial trends near
0 in the instantaneous frequency series. Thus,

𝚿( 𝑓 ) = V𝑇𝜓( 𝑓 ), (5)

where 𝚿( 𝑓 ) = (𝚿0 (0; 𝑓 ), . . . ,𝚿𝐾−1 (0; 𝑓 ))𝑇 and 𝜓( 𝑓 ) =

(𝜓(0; 𝑓 ), . . . , 𝜓(𝑁 − 1; 𝑓 ))𝑇 . By then solving a polynomial
regression problem in the frequency domain with 𝚿 as our
input data in the form

𝚿( 𝑓 ) = 𝐻c( 𝑓 ) + z (6)

where 𝐻 is a 𝐾× (𝑃+1) orthonormal design matrix associated
with the polynomial eigencoefficients at a = 0, using ordinary
least-squares we obtain

ĉ( 𝑓 ) = (𝐻𝑇𝐻)−1𝐻𝑇𝚿( 𝑓 ) = 𝐻𝑇𝚿( 𝑓 ) (7)

r( 𝑓 ) = (𝐼𝐾 − 𝐻𝐻𝑇 )𝚿( 𝑓 ). (8)

Notice that below we have ĉ𝑃/0 which is ĉ without the first
component. So, if 𝑃 = 1, then ĉ𝑃/0 would be constructed by
using the submatrix 𝐻𝑃/0 made up of only the second column
of 𝐻. Thus,

ĉ𝑃/0 ( 𝑓 ) := (𝐻𝑇
𝑃/0𝐻𝑃/0)

−1𝐻𝑇
𝑃/0𝚿( 𝑓 ) = 𝐻𝑇

𝑃/0𝚿( 𝑓 ) (9)

r𝑃/0 ( 𝑓 ) := (𝐼𝐾 − 𝐻𝑃/0𝐻𝑇𝑃/0)𝚿(f) (10)

where ĉ𝑃/0 has dimension 𝑃 × 1 with elements 𝑐𝑃/0 and r𝑃/0
has dimension 𝐾 × 1 and is defined for each 𝑝 ∈ {1, · · · , 𝑃}.
�̃�3 can then be defined as:

�̃�3 (𝑃; 𝑓 , 𝐾) :=
𝑐2
𝑃/0 ( 𝑓 )

| |r𝑃/0 | |2/(𝐾 − 𝑃)
. (11)

As 𝑁 → ∞,𝑊 → 0, �̃�3 converges in distribution to an 𝐹

distribution with 1 and 𝐾 − 𝑃 degrees of freedom [2].

III. WEIGHTED 𝐹4 TEST STATISTIC

Our proposed statistic is constructed in two steps, the first
being a modification of �̃�3 using the same method shown in
[2], [6], [7]. To create 𝐹4, consider 𝐾 tapers, enumerated from
0 to 𝐾 − 1. The sine tapers are given by:

𝑣
(𝑘 )
𝑡 =

√︂
2

𝑁 + 1
sin

(
𝜋(𝑘 + 1) (𝑡 + 1)

𝑁 + 1

)
. (12)

The matrix of these tapers is created by evaluating Eqn. (12) on
a discrete mesh over 𝑡 ∈ {0, · · · , 𝑁−1} and 𝑘 ∈ {0, · · · , 𝐾−1}
resulting in

V :=
©«
𝑣
(0)
0 𝑣

(1)
0 · · · 𝑣

(𝐾−1)
0

...
. . .

...

𝑣
(0)
𝑁−1 · · · · · · 𝑣

(𝐾−1)
𝑁−1

ª®®®¬
We can see that Eq. (12) is differentiable at all 𝑡 ∈ R, for

any 𝑁 and 𝐾 . The derivative with respect to time of the sine
tapers is

¤𝑣 (𝑘 ) (𝑡) :=
√︂

2
𝑁 + 1

cos
(
(𝑘 + 1)𝜋(𝑡 + 1)

𝑁 + 1

)
(𝑘 + 1)𝜋
𝑁 + 1

. (13)

Using the same discrete mesh as above, the matrix ¤V
of the time derivatives of the sine tapers is obtained. By
replacing the DPSS with the sinusoidal tapers we decrease
the computational complexity of the test. The DPSS are the
solution to an eigenvalue problem that must be computed
for a given 𝐾 and 𝑁 in each �̃�3 test statistic rather than a
direct computation of a sinusoidal function in the case of the
sine tapers. The vector of complex-valued eigencoefficients at
frequency 𝑓 is then given by

Y 𝑓 := V𝑇X 𝑓 (14)

where,

Y 𝑓 :=
©«

�̃�0 ( 𝑓 )
�̃�1 ( 𝑓 )
...

�̃� (𝐾−1) ( 𝑓 )

ª®®®®¬
, X 𝑓 :=

©«
𝑋0𝑒

−𝑖2𝜋 𝑓 0

𝑋1𝑒
−𝑖2𝜋 𝑓 1

...

𝑋(𝑁−1)𝑒
−𝑖2𝜋 𝑓 (𝑁−1)

ª®®®®¬
Notice that this vector is identical to the one defined in

Section II other than the type of tapers that are used. Now, let

Ỹ 𝑓 := WY 𝑓 (15)

be a vector of weighted eigencoefficients with non-zero
weights and weight matrix

W :=
©«
𝑤0 0 · · · 0
0 𝑤1 · · · 0

0
...

. . . 0
0 0 · · · 𝑤𝐾−1

ª®®®®¬
Following the same method described in Section II, but

replacing Y 𝑓 with Ỹ 𝑓 , this new 𝜓(𝑡; 𝑓 ) can be shown to be
still proportional asymptotically (as 𝑁 → ∞, 𝑊 → 0) to



Fig. 1. Theoretical density of the 𝐹1,𝐾−𝑃 distribution in red overlayed on
the simulated density of 𝐹4 under the null hypothesis, when the process was
Gaussian white noise. The number of simulations was 10,000.

𝜓(𝑡; 𝑓 ) ∼ Laplace(0, 1)
𝜒2

2
(16)

when X is purely white noise. Additionally, 𝜓(𝑡; 𝑓 ) can still be
scaled so it has the same distribution at each time 𝑡, allowing
𝜓(𝑡; 𝑓 ) to remain well-behaved. We can then define 𝐹4 as:

𝐹4 (𝑃; 𝑓 , 𝐾) :=
𝑐2
𝑃
( 𝑓 )

| |r𝑃/0 | |2/(𝐾 − 𝑃)
(17)

Asymptotically, 𝐹4 still converges in distribution to an 𝐹

distribution with degrees of freedom 1 and 𝐾 − 𝑃. This
is illustrated by the simulation shown in Fig. 1, where the
theoretical density of the 𝐹1,𝐾−𝑃 distribution agrees well with
a histogram density estimate of the distribution of 𝐹4 (𝑃; 𝑓 , 𝐾),
under the assumption of the time series being Gaussian white
noise.

The weights used in this paper are such that the 𝑖𝑡ℎ element
on the diagonal of W is given by the 𝑖𝑡ℎ element of

1
seq(from = 1, to = max(1, penalty ∗ 𝐾), length.out = 𝐾)

(18)
where the penalty is recommended to be 0.15 (simulation
result). To illustrate the reasoning behind the addition of
weights to the test statistic, consider Fig. 2. The issue arises
from the need to pick 𝐾 (the number of tapers used in the
test) before the test is conducted. We can see that under
certain circumstances (see Fig. 2), if the selected 𝐾 is too large
(e.g., 𝐾 = 80), �̃�3 can occasionally miss the carrier frequency
altogether. The wider window, 𝑊 , causes the concentration of
the peak to be split out into two smaller peaks found near or at
𝑓 ± (𝐾+1)

2𝑁 . This could be impaired further if a lower confidence
level was chosen, as one would falsely detect two peaks and
not detect the true peak in the same test. In contrast, 𝐹4 with
the weighting, at 𝐾 = 80 does detect the peak at 0.1 with
reduced side spikes around 𝑊 .

Furthermore, using a lower number of tapers, 𝐾 = 20, as
shown in Fig. 3 across all the frequencies tested, 𝐹4 only
detects the carrier at 0.1, whereas �̃�3 falsely detects three other

Fig. 2. (Left) �̃�3 applied to FM series (carrier frequency 𝑓 = 0.1) with input
parameter 𝐾 = 80. (Right) 𝐹4 applied to the same FM series with the same
input parameter. Dotted blue lines represent the range in which we should
find the signal in the 𝐹-test, dotted red lines represent 𝑓 ± (𝐾+1)

2𝑁 , and the
horizontal red line is the quantile of an 𝐹1,79 corresponding to a significance
level of 1/𝑁 .

Fig. 3. �̃�3 in red applied to FM series under background Gaussian white noise
with input parameter 𝐾 = 20 across all frequencies. 𝐹4 in black, applied to
the same FM series with the same input parameter. The horizontal red line is
the quantile of an 𝐹1,79 corresponding to a significance level of 1/𝑁 .

frequencies along with the carrier. These weights are applied
to mitigate the occurrence of the side spikes around 𝑊 and
widen the number of possible 𝐾’s that will be effective at
detecting the true underlying modulation. Additionally, these
weights cannot be effectively applied with the DPSS tapers
due to the concentration of the DPSS in the spectral window.
This is another reason we chose to use the sine tapers.

IV. THE AGGREGATE TEST

The main downside of 𝐹4 is that a specific 𝐾 still must
be chosen before the test can be conducted. We define the
aggregate test statistic, denoted by 𝑇𝑎, as follows. Let K :=
{𝐾1, · · · , 𝐾 |K | }, where each 𝐾 𝑗 ∈ K is a specified number of
tapers that is used in the 𝑗 th 𝐹4-test. The test statistic 𝑇𝑎 for
testing for a modulated signal at frequency 𝑓 with modulation
degree at most 𝑃 is given by

𝑇𝑎 :=
|K |∑︁
𝑖=1

𝟙(𝐹4 (𝑃; 𝑓 ,𝐾𝑖 )≥𝐹1,𝐾𝑖−𝑃,𝛽 ) (19)



Fig. 4. Estimated correlation between 70 pairs of (𝑇𝑎 )𝑖 ranging from 𝐾 = 10
to 𝐾 = 80. 10,000 simulations were conducted with unique Gaussian white
noise as the time series.

where 𝐹1,𝐾𝑖−𝑃,𝛽 is the (1 − 𝛽)-quantile of the 𝐹1,𝐾𝑖−𝑃 distri-
bution. The aggregate test rejects the null hypothesis that there
is no modulated signal at frequency 𝑓 if 𝑇𝑎 ≥ 𝑅, where 𝑅 is
a specified threshold number of 𝐹4 tests that must reject the
null hypothesis before the aggregate test does.

If the indicators in 𝑇𝑎 were independent then the distribution
of 𝑇𝑎 would Binomial(|K |, 𝛽). Unfortunately, this is not the
case. Letting (𝑇𝑎)𝑖 denote the 𝑖th indicator in the sum in 𝑇𝑎,
each (𝑇𝑎)𝑖 ∼ Bernoulli(𝛽). Notice here that 𝛽 is the Type I
error of each 𝐹4 test in the sum. As each of the (𝑇𝑎)𝑖 tests
are conducted on the same starting data, only differing in the
number of tapers used in the test, there is reason to suppose
that the (𝑇𝑎)𝑖 are correlated with each other. This is further
supported by Fig. 4 in which the correlation from 10,000
simulations of 70 unique choices of 𝐾 was examined under
Gaussian white noise. There is a positive correlation for pairs
of 𝐾 close to each other such as 𝐾𝑖 = 49 and 𝐾 𝑗 = 51, and a
negative correlation for points further away such as 𝐾𝑖 = 20
and 𝐾 𝑗 = 80.

With the correlation Cor
[
(𝑇𝑎)𝑖 , (𝑇𝑎) 𝑗

]
≠ 0 for any 𝑖, 𝑗

pair, the distribution of 𝑇𝑎 is unknown, as it is the sum of
non-independent Bernoulli(𝛽) random variables. In the next
section, for a given 𝑅, we use simulation to determine the
Type I error 𝛽 for the 𝐹4 tests required to give a specified
level 𝛼 (we use 𝛼 = 1/𝑁) in the aggregate test.

V. SIMULATION AND COMPARISON

To directly compare �̃�3, 𝐹4, and the aggregate test; we set
the Type I error of the tests all to 1

𝑁
. This is trivial for the two

𝐹-tests, but not as straightforward for the aggregate test due to
its unknown distribution. for a given 𝑅 we need to set 𝛽 such
that the resulting 𝑇𝑎 test has a Type I error equalling 1

𝑁
. To

illustrate this point further, a choice of 𝑅 = 5 or 𝑅 = 8 will lead
to choosing 𝛽 = 6× 10−5 or 𝛽 = 1.6× 10−4 respectively. Note

Fig. 5. Probability of detection of �̃�3 (1; 0.1, 𝐾 ) in red, 𝐹4 (1; 0.1, 𝐾 ) in
green, and the aggregate test with K = {5, · · · , 80} and R = 5 in blue.
2,000 simulations were conducted with N = 2,000 for each simulation. The
signal consisted of linear FM with a small modulation bandwidth at carrier
frequency 0.1 that was embedded in Gaussian white noise. It can be given by
Eqn. (1) when ` = 1.4, 𝜙 (𝜏 ) = 0.0005

𝑁
2

(
𝑡 − 𝑁

2

)
, 𝑓 = 0.1 and 𝑍𝑡 is Gaussian

white noise. These tests were conducted at a significance level of 1
𝑁

= 1
2000 .

here that these were found through simulation by choosing 𝑅
and 𝛽 pairs with the requirement that the resulting Type I error
was 1

𝑁
.

Two simulations of size 2,000 were conducted to estimate
the probability of detection with 𝑅 = 5. The first simulation
was conducted under harder circumstances. We have found
that a reduced bandwidth of modulation causes the �̃�3 to have a
reduced power at higher 𝐾 , as shown by the red curve in Fig. 5.
By comparison, 𝐹4 (the green curve) has the power of the test
increasing, and it is more beneficial to choose a higher 𝐾 in
practice. The horizontal dashed blue line represents the power
of the aggregate test; it has a singular value as it considers all
the 𝐾 ∈ K where K = {5, · · · , 80} simultaneously. However,
it is not significantly different from the 𝐹4 test for any 𝐾 ≥ 13.
The second simulation was conducted over a wider modulation
bandwidth, with results shown in Fig. 6. The range of highest
power for �̃�3 has been shifted to higher values of 𝐾 . Without
knowing what the modulation bandwidth is before conducting
the experiment, it is unlikely that a “correct” 𝐾 will be chosen
for an arbitrary �̃�3 test. In comparison, 𝐹4 and the aggregate
test increase their power at the larger modulation bandwidth
and a choice of high 𝐾 for 𝐹4 will still yield a high power test.
The advantage of the aggregate test is that at no point does 𝐾
need to be chosen. By choosing K = {5, · · · , 80}, we hope to
create an envelope that will form an appropriately conditioned
test regardless of the width of modulation contained in the time
series.

VI. CONCLUDING REMARKS AND FUTURE WORK

We have introduced a new 𝐹-test that is more robust to the
choice of 𝐾 and to the type of modulation contained in the
series. This 𝐹-test is also faster to compute in practice, with a
simpler form of tapers. We have presented its asymptotic null
distribution and compared its performance against �̃�3 through
simulation to show its larger power through a larger range of



Fig. 6. Probability of detection of �̃�3 (1; 0.1, 𝐾 ) in red, 𝐹4 (1; 0.1, 𝐾 ) in
green, and the aggregate test with K = {5, · · · , 80} and R = 5 in blue.
2,000 simulations were conducted with N = 2,000 for each simulation. The
signal consisted of linear FM with a larger modulation bandwidth at carrier
frequency 0.1 that was embedded in Gaussian white noise. It can be given by
Eqn. (1) when, ` = 1.4, 𝜙 (𝜏 ) = 0.001

𝑁
2

(
𝑡 − 𝑁

2

)
, 𝑓 = 0.1 and 𝑍𝑡 is Gaussian

white noise. These tests were conducted at a significance level of 1
𝑁

= 1
2000 .

𝐾 . We also introduced the aggregate test statistic and showed
under simulation its consistency under different amounts of
modulation, without the disadvantage of the choice of 𝐾 . The
issues with the unknown distribution of the aggregate test were
discussed, as well as our proposed choices of 𝑅 and 𝛽 to make
a test with Type I error 1

𝑁
.

In future work, we desire to derive an approximate distri-
bution for the sum of correlated Bernoulli random variables
allowing for the aggregate test to have a defined distribution.
Another interesting problem is choosing an optimal set of
weights (W), as we believe that at low 𝐾 , the choice of weight-
ing is causing decreased power in the 𝐹4 test. Additionally,
there is the interesting result of poor performance choices of
𝐾 even in �̃�3, as seen by the oscillatory behaviour in Fig. 5
and 6. We suspect this behaviour of �̃�3 (and 𝐹4 for smaller 𝐾)
for odd versus even 𝐾 is related to the modulation bandwidth
and to the symmetry of the modulation about the midpoint of
the time span.
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