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Abstract

A hypergraph is useful to express the relationship between two or more nodes. Real hy-
pergraph data are typically weighted. We propose a weighted evolving hypergraph model that
considers preferential attachment. The model allows variability on the two basic components of
the evolving hypergraph: the number and the size of the hyperedges to be connected. Under
the mild distributional conditions on the two varying quantities, we derive the exact degree
distribution that asymptotically follows a power-law distribution. We find that the limiting
power-law exponent is affected by the distribution of hyperedge sizes. The distribution of the
number of hyperedges to be connected has a considerable impact on a small-degree range in
which non-power-law behavior is frequently observed in real data. Moreover, we argue that the
degree distribution of the model can be expressed as a mixture of the degree distributions with
a fixed number of hyperedges to be connected. The validity and usefulness of the model are
explained with interpretations via a simulation study and real data analysis.
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1 The Model

Let H = (V,E,w) be a weighted hypergraph with a set V of nodes, a set E of hyperedges, and a

weight function w : E → R from the hyperedge set to the real numbers, where w(e) is the weight

of hyperedge e ∈ E. A hyperedge e = {v1, · · · , vn} is a subset of V , and we call |e| = n the size

of a hyperedge. A degree d(v) of a node v is defined as the sum of the weights of hyperedges that

contain v, that is, d(v) =
∑
e∈E:v∈e w(e).

We propose an evolving hypergraph model as follows:

� Initialization: Let the initial hypergraph be H0 = (V0, E0, w0).
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� Growth: At each time t = 1, 2, · · · , hypergraph Ht = (Vt, Et, wt) is constructed by adding a

new node vnew with new Mt hyperedges which are evoked by vnew. For each try q = 1, · · · ,Mt,

vnew selects Y ∗q,t = min(Yq,t, Nt−1) existing nodes and forms a hyperedge consisting of vnew

and the Y ∗q,t nodes.

� Preferential attachment: The new node vnew selects an existing node vi with probability

proportional to the node degree d(vi).

Let Nt = |Vt|. Then we have Nt = N0 + t. Further, we denote by St =
∑
v∈Vt

d(v) the sum of

all the node degrees of the hypergraph Ht. We assume that there is at least one hyperedge in the

initial hypergraph H0, i.e., N0 ≥ 2 and S0 ≥ 2.

Let DM be the distribution of the number of hyperedges to be connected with a probability mass

function PM (m), m = 1, 2, · · · . Let DY be the distribution of the number of the nodes that are

selected for a new hyperedge, with a probability mass function PY (y), y = 1, 2, · · · . Let µM = E[M ],

σ2
M = V ar[M ], µY = E[Y ], and σ2

Y = V ar[Y ], where M ∼ DM and Y ∼ DY . We independently

assign distributions on the two varying quantities that Mt ∼ DM and Yq,t ∼ DY , t = 1, 2, · · · ,
q = 1, · · · ,Mt. Those distributions have integer values larger than or equal to 1, implying that any

newly coming node tries to construct at least one hyperedge.

We assume the following for our hypergraph model:

(A1) E[Mβ ] <∞, E[Y γ ] <∞ for some finite positive values β and γ such that

5

2
< β <∞, µY + 1 < γ <∞,

(
β − 5

2

)
(γ − 1) >

3

2
.

(A2) There exist an integer t0 ≥ 0 and a positive constant δ, 1/γ < δ < 1/(µY + 1), satisfying

max
v∈Vt

d(v) ≤ St
Nδ
t

, for t = t0, t0 + 1, · · · . (1)

2 Degree Distribution

The degree distribution of a hypergraph is defined by the fraction of nodes in the hypergraph. Let

Nk,t be the number of nodes with degree k in Ht. Then we can express the degree distribution of

Ht by Pt(k) = Nk,t/Nt. For the random generative process that we proposed in Section 2, we want

to express its degree distribution at time t using E[Nk,t]/Nt. We say that the steady-state degree

distribution of a hypergraph exists if limt→∞(E[Nk,t]/Nt) exists, and we write it as

P∞(k) = lim
t→∞

E[Nk,t]

Nt
, k = 0, 1, · · · . (2)

We now state and prove the degree distribution of the proposed evolving hypergraph model.
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Theorem 1. (Degree Distribution for Hypergraph) Assume (A1) and (A2). Then the steady-state

degree distribution of a hypergraph exists and is given by

P∞(k) =
(1 + 1/µY ) Γ(k)

Γ(k + 2 + 1/µY )
E

[
Γ (M + 1 + 1/µY )

Γ(M)
1(M ≤ k)

]
, k = 1, 2, · · · , (3)

where the expectation is made over M .

Theorem 2. Assume (A1) and (A2). Then the steady-state degree distribution asymptotically

follows a power-law distribution with exponent 2 + 1/µY . Specifically,

P∞(k) ≈k (1 + 1/µY )E

[
Γ (M + 1 + 1/µY )

Γ(M)

]
k−(2+1/µY ), (4)

where the sign ≈k means that the ratio of two quantities on both sides of the sign tends to 1 as k

tends to infinity.

Theorem 3. Assume (A1) and (A2). Suppose that M has a finite support, i.e., M ≤ Mmax for

some integer Mmax. Then the steady-state degree distribution of the model is a finite mixture of the

distributions P∞,m(k) of the model with constant m for m = 1, · · · ,Mmax, given by

P∞(k) =

Mmax∑
m=1

PM (m)P∞,m(k). (5)

3 Numerical Simulation

In this section, we perform extensive experiments as a way of validation of the result in Theo-

rem 1 under various distributional settings of M and Y . We use Python for simulation, and the

numpy.random.choice1 function of NumPy version 1.16.4 is employed for the weighted choice of

nodes. The initial hypergraph H0 is set as the hypergraph consisting of ten nodes V0 = {1, · · · , 10}
and two hyperedges E0 = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}} of size 5 with unit weights. Then we add

10, 000 nodes at time points t = 1, · · · , 10, 000 according to the process in Section 1. We focus on

the following two key features of the derived limiting degree distribution: the impact of DY on the

limiting power-law behavior and the impact of DM on the non-power-law behavior in a range of

small degrees.

According to Theorem 1, the degree distribution is affected by DY only through µY . Also,

Theorem 2 shows that the limiting power-law exponent is 2 + 1/µY . To check these properties, we

fix M = 2, and each synthetic data is generated with (1a) Y = 2, (1b) Y = 1, 2, 3 with PY (1) = 0.25,

PY (2) = 0.5, PY (3) = 0.25, and (1c) Y ∼ 1 + Poisson(1). For all the three cases, we have µY = 2.

1https://docs.scipy.org/doc/numpy-1.16.0/reference/generated/numpy.random.choice.html
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Figure 1: The degree distribution P (k) for the generated hypergraphs and the theoretical steady-
state degree distribution P∞(k) in Theorem 1. Hypergraphs are generated with M = 2 and (a)
Y = 2, (b) Y = 1, 2, 3 with PY (1) = 0.25, PY (2) = 0.5, PY (3) = 0.25, and (c) Y ∼ 1 + Poisson(1).

Figure 1 shows the degree distribution of the generated hypergraphs. Although the distributions

of Y are different, the degree distributions show almost the same shape. Moreover, the simulation

results agree well with the theoretical result. We draw the line with slope −(2 + 1/µY ) = −2.5, and

it indicates that the simulation data tends to follow the limiting (k →∞) slope −2.5.

Figure 2: The degree distribution P (k) for the generated hypergraphs and the theoretical steady-
state degree distribution P∞(k) in Theorem 1. Hypergraphs are generated with M = 2 and (a)
Y ∼ 1 + Poisson(0.25), (b) Y ∼ 1 + Poisson(3), and (c) Y ∼ 1 + Poisson(9).

We generate data with the Poisson distribution on Y , (2a) Y ∼ 1 + Poisson(0.25), (2b) Y ∼
1 + Poisson(3), and (2c) Y ∼ 1 + Poisson(9). Again, M = 2 is fixed. The average values of Y are
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different over data, 1.25, 4, and 10 for (2a), (2b), and (2c), respectively. In Figure 2, we plot the

degree distributions of the simulated data. The result indicates that as the quantity µY increases,

the power-law exponent of the degree distribution decreases. It also tends to obey the theoretical

result well.

Figure 3: The degree distribution P (k) for the generated hypergraphs and the theoretical steady-
state degree distribution P∞(k) in Theorem 1. Hypergraphs are generated with Y = 2 and (a)
M = 2, (b) M = 1, 2, 3 with PM (1) = 0.25, PM (2) = 0.5, PM (3) = 0.25, and (c) M ∼ 1+Poisson(1).

We now fix Y = 2 and vary M as (3a) M = 2, (3b) M = 1, 2, 3 with PM (1) = 0.25, PM (2) = 0.5,

PM (3) = 0.25, and (3c) M ∼ 1 + Poisson(1). Figure 3 shows the degree distribution of generated

hypergraphs. The assumption of varying M has a significant influence on a small degree range. The

degree distribution of the case (3a) seems straight from k = 2. The case (3b) shows a straight line

shape from k = 3, and we can observe that it is curved for k ≤ 3. In the case of (3c), the degree

distribution is getting straightened as k increases. This result suggests that the degree distribution

can be flexibly modified in a small degree range according to the distribution of M .

4 Real Data Analysis

We here analyze scientific collaboration hypergraphs obtained from the Web of Science, which pro-

vides all the published scientific articles in the world. The eight fields are considered in our analysis:

Biotechnology & Applied Microbiology, Computer Science, Electrical & Electronic Engineering, Ge-

netics & Heredity, Management, Physical Chemistry, Sociology, and Statistics & Probability. These

hypergraphs are of the scientific papers published from 2007 to 2016. The nodes represent authors

and hyperedges co-authorships. A hyperedge consists of the set of authors of a paper. In order to
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investigate the scientific collaboration, all single-author papers are excluded from the analysis.

Table 1: Summary statistics and power-law fitting results of the scientific collaboration data. Eight
fields are considered. We present the number of nodes and hyperedges in 2016, the average and
standard deviation of the degree distribution in 2016, and the average and standard deviation of
calculated M and Y . We also present the estimated kmin and α according to BIC.

Field
Number of Degree BIC DM DY

Nodes (N) Hyperedges Avg. Std. k̂min α̂ Avg. Std. Avg. Std.
Biotechnology & A. M. 729,478 256,975 2.01 3.67 12 2.96 1.52 1.30 4.49 3.37
Computer Science 528,267 325,396 2.37 4.71 14 2.95 1.61 1.42 2.49 1.92
Electrical & Electronic E. 591,093 364,216 2.74 6.00 22 2.98 1.80 1.87 2.94 2.17
Genetics & Heredity 645,771 207,195 2.32 4.56 15 2.92 1.62 1.67 6.00 8.25
Management 97,229 61,423 1.97 2.55 10 3.60 1.44 1.03 1.85 1.15
Physical Chemistry 727,213 450,109 3.27 7.70 24 2.97 2.02 2.28 3.82 2.40
Sociology 42,517 21,697 1.50 1.41 6 3.63 1.27 0.73 1.72 1.17
Statistics & Probability 92,397 59,023 2.24 3.83 11 3.05 1.56 1.37 2.01 1.62

In order to investigate the impact of DM and DY on the observed degree distributions, we fit the

Zipf distribution to the degree distribution in 2016 for each field. The Zipf distribution, denoted by

Zipf(α, kmin), is a discrete form of the power-law distribution with a probability mass function

f(k|α, kmin) =
1

ζ(α, kmin)
k−α, k = kmin, kmin + 1, · · · , (6)

where ζ(α, kmin) =
∑∞
k=kmin

k−α is a Hurwitz zeta function. Note that f(k|α, kmin) ∝ k−α. Let

ki = d(vi) be the degree of author vi, i = 1, 2, · · · , N , where N is the number of authors in the

system. Then we choose the power-law exponent α and the smallest value kmin of the range of the

node degrees over which the degree distribution is in a power-law shape. This is made by applying

the approach of Handcock and Jones (2004) [1]. We estimate the degree distribution for the data

given by

p(k|π, α, kmin) =

{
πk if k = 1, · · · , kmin − 1,(

1−
∑kmin−1
k′=1 πk′

)
f(k|α, kmin) if k = kmin, kmin + 1, · · · ,

where π = (π1, · · · , πkmin−1) and f(k|α, kmin) is as in Eq. (6). Once kmin is chosen, the pa-

rameters α and πk, k = 1, 2, · · · , kmin − 1 are determined by maximizing the likelihood function

L (π, α|k1, · · · , kN ) =
∏N
i=1 p(ki|π, α, kmin).

Then, how can we determine kmin? The estimates of α and the fitting line might vary according to

chosen kmin. The importance and methodology of choosing kmin are thoroughly discussed in Clauset

et al. (2009) [2]. In our study, we choose kmin that minimizes BIC = −2 lnL (π̂, α̂|k1, · · · , kN ) +

(lnN)kmin, where π̂ and α̂ are the maximum likelihood estimates corresponding to kmin. Table 1
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(a) Biotechnology & A. M. (b) Computer Science

(c) Electrical & Electronic E. (d) Genetics & Heredity

(e) Management (f) Physical Chemistry

(g) Sociology (h) Statistics & Probability

Figure 4: Degree distribution and fitted power-law curves for the eight fields of scientific collaboration
hypergraphs according to BIC. The estimated kmin values are depicted by blue vertical lines.
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presents the estimates of kmin and α according to BIC. The degree distribution and fitted power-law

curves are shown in Figure 4. We can see that kmin (depicted by the vertical line) is reasonably

determined for all the eight fields.

Figure 5: The relationships between the expectation of Y and α̂ (upper left), the expectation of M

and k̂min (upper right), the standard deviation of M and k̂min (lower left), and the maximum of M

and k̂min (lower right) according to BIC.

In Figure 5, we plot some relationships among α̂, k̂min, D̂M , and D̂Y . We can observe that (i) α̂

is inversely proportional to the average of Y , and (ii) k̂min is proportional to the average, standard

deviation, and maximum of M .

5 Concluding Remarks

In this paper, we proposed a novel weighted hypergraph model considering the preferential attach-

ment. We believe that the proposed model is productive since we allowed variabilities on the two

primary constituents of the evolving hypergraph: the number and size of the hyperedges to be con-

nected. We have shown that the exact degree distribution exists under the mild conditions of M

and Y . Surprisingly, the degree distribution has an asymptotic power-law behavior, and the limiting

power-law exponent is only affected by the average of Y . The special cases of fixed M and Y were
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studied in this work, where their degree distributions turned out to have a simpler form than the

general case of the model. We also argued that the case of varying M can be expressed as a mixture

distribution of fixed M cases. The deviation of a power-law behavior in a small degree range was able

to be explained by the varying M assumption. The theoretical degree distribution was evidenced

by the extensive simulation studies.
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