
A wavelet regression approach for dependence calibration in
conditional copula model

Cheikh Tidiane Seck 1 ∗, Département de Mathématiques, Université Alioune Diop, Bambey, Senegal
Aba Diop, Département de Mathématiques, Université Alioune Diop, Bambey, Senegal

Abstract.
In presence of covariates, dependence modeling can be done using conditional copula. In
case where the copula function belongs to a given parametric family, an important question
is to determine the relationship between the copula dependence parameter and the covari-
ates. In this paper, we propose a wavelet regression approach to estimate this relation often
described by the so-called calibration function. We discuss asymptotic minimax properties
of the linear and non-linear wavelet regression estimators and show their performance via a
simulation study. An application to meteorological data reveals that the temperature influ-
ences the dependence structure between the maximum and the minimum relative humidity
variables, when it takes high values.

Keywords : conditional copula ; calibration function ; copula parameter ; wavelet re-
gression.

1 Introduction

Currently, copulas are widely used for modeling dependence structures of random variables.
They have been applied in various domains such as : finance, insurance, survival analysis,
meteorology, etc. and a large class of parametric copula models, describing different types of
dependence, have been experimented in practice. However, when the dependence structure
of a given vector of random variables is influenced by the values of another measured covari-
ate, a conditional copula model seems more convenient to be employed. In this paper, we
are interested in estimating non-parametrically the functional relationship between the de-
pendence parameter, say θ, of a given parametric copula family Cθ and some real covariate
X . This relationship is often described as

θ(X) = g−1(η(X)), i.e. g(θ(X)) = η(X), (1)

where g−1 is a known inverse link function ensuring that the functional parameter θ(·) takes
its values on the correct range, and η is the so-called calibration function which adjusts the
level of dependence on the covariate values.
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Since the extension of Sklar’s theorem [11] for conditional distributions, bringing more
flexibility to copulas, dependence modeling via conditional copula has gained an increas-
ing interest among researchers. For instance, dealing with the Clayton copula family, [4]
proposed a parametric approach, where the parameter θ is a simple linear function in the
covariate X , and utilized the maximum likelihood method to estimate the coefficient in the
linear relation. Assuming known marginal distributions, [2] provided a nonparametric ap-
proach based on local polynomial techniques to estimate the calibration function η within
a local likelihood framework. This approach has been extended by [1] in the context of
unspecifed marginal distributions. In the same spirit, [20] proposed a penalized estimation
approach that allows parsimonious and enhanced interpretation of the dependence structure
of interest. As well, [17] employed cubic splines in a Bayesian context for estimating the cal-
ibration function η. And recentlty, [8] proposed a testing methodology for various parametric
forms of the calibration function η by letting the marginal distributions unspecified.

In this paper, we propose a wavelet-based estimation approach of the calibration function
η, by assuming general margins. Indeed, wavelet series allow parsimonious expansion of
various functions. Because of their good localization properties, wavelet bases adapt well
to local features of many kinds of functions, including inhomogeneous and discontinuous
ones. The approximation properties of wavelet bases are discussed at length in [14]. For
more details on the wavelet theory, we refer to [13, 15, 16, 19] and references therein.

The methodology of this paper is based on a regression framework. Precisely, we deal
with a fixed design wavelet regression model, where the response variable is defined by
the quantity Z := η(X) = g(θ(X)), and the predictor is the covariate X , with support
[a, b] ⊂ R, a ≤ b. To make our approach possible, we will first partitionne the support
[a, b] in finite number of bins and construct, for each bin, an empirical value representing the
functional copula parameter θ(·) in that bin. Then, since the link function g is known, we will
apply wavelet denoising techniques on the series of corresponding values for η ( obtained as
η(·) = g(θ(·))), which will be seen as a theoretical signal corrupted by an additive noise.

The paper is organized as follows. Section 2 describes the methodology. After recall-
ing the wavelet expansion on the interval [0,1], we present the wavelet shrinkage method
along with Mallat’s (1989) pyramidal algorithm. We also discuss in this section asymptotic
minimax properties of the linear and nonlinear wavelet shrinkage estimators. In Section 3,
we make a simulation study to show the performance of our approach. Section 4 treats an
application to a real dataset, while Section 5 concludes the paper.

2 Methodology

2.1 Wavelet expansion on the interval

Without loss of generality we may take [a, b] = [0, 1] and assume that the function η to be
estimated belongs to L2([0, 1]), the space of all measurable and square integrable functions
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defined on [0, 1]. Thus, we will use wavelet bases on the interval [0, 1] to define its expansion.
Let φ be a scaling function and ψ its associated mother wavelet. Assume that both φ and ψ
are compactly supported, and define for all integers j ∈ Z, k ∈ Z,

φj,k(x) = 2j/2φ(2jx− k) and ψj,k(x) = 2j/2ψ(2jx− k).

Let j0 ∈ N be a fixed positive integer, in [5] it is constructed an orthonormal wavelet
basis for the space L2([0, 1]), with exactly 2j basis functions at each resolution level j ≥ j0.
Precisely, the family {φj0,k : k = 0, . . . , 2j0 − 1}

⋃
{ψj,k : j ≥ j0, k = 0, . . . , 2j − 1} forms

an orthonormal basis for L2([0, 1]). Thus, our calibration function η can be decomposed as
follows :

η(x) =
2j0−1∑
k=0

αj0,kφj0,k(x) +
∞∑
j=j0

2j−1∑
k=0

βj,kφj,k(x), x ∈ [0, 1], (2)

where αj0,k = 〈φj0,k, η〉 =
∫ 1

0
φj0,k(x)η(x)dx and βj,k = 〈φj0,k, η〉 =

∫ 1

0
ψj,k(x)η(x)dx are

respectively called the scale coefficients and detail coefficients ; the parameter j0 is a fixed
resolution level.

Note that the orhonormal bases proposed in [5] are boundary adapted. That is, the cor-
responding wavelet transform automatically handles the boundary effects. There also exist
other methods for correcting the boundary bias of wavelet estimators such as : periodization,
symmetrization and zero padding.

2.2 A wavelet shrinkage method

Assume that we have n independent and identically distributed observations (Y1i, Y2i, Xi),
i = 1, . . . , n of a random triple (Y1, Y2, X). X represents a continuous covariate, with
support [a, b],−∞ < a ≤ b <∞. (Y1, Y2) is a couple of continuous random variables, with
marginal distributions F1 and F2, the dependence of which is influenced by the covariate X .
Let HX , F1X and F2X denote respectively the joint and conditional marginal distributions
given X of the pair (Y1, Y2). By Sklar’s Theorem (conditional version), for any x in the
support of X there is a unique copula Cx such that

HX(y1, y2/x) = Cx(F1X(y1/x), F2X(y2/x)), y1, y2 ∈ R. (3)

In this paper, we suppose that Cx belongs to a given parametric copula family and its form
does not change with x so that we can write Cx(·, ·) ≡ C(·, ·, θ(x)), where θ(x) is the
dependence parameter satisfying model (1). In contrast, if the conditional margins F1X and
F2X are known, we deal with real observations U1i = F1X(Y1i/Xi) and U2i = F2X(Y2i/Xi)

from the model
(U1i, U2i)/Xi ∼ C(u1, u2; θ(Xi)), (4)

with θ(Xi) = g−1(η(Xi)), for i = 1, . . . , n. If F1X and F2X are unknown, we replace U1i

and U2i by pseudo-observations as, for example, in [1] :

Û1i = F̂1X(Y1i|Xi); and Û2i = F̂2X(Y2i|Xi), i = 1, . . . , n, (5)
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where for j = 1, 2

F̂jX(y|x) =
n∑
i=1

wn,i(x, h)I(Yji ≤ y),

with
wn,i(x, h) =

Kh(Xi − x)∑n
k=1Kh(Xk − x)

, and Kh(·) =
1

h
K
( ·
h

)
.

h denotes a bandwidth for controlling the smoothness and K(·) is a symmetric kernel func-
tion.

Our aim is to determine the relationship between the copula parameter θ(·) and the co-
variate X ; that is to estimate the calibration function η. The definition of the quantity
Z := g(θ(X)) = η(X) suggests us using a regression framework. But, we do not have
direct observations of the random variable Z, which depends upon the functional copula pa-
rameter θ(·). In order to use the regression setting, we will construct, for the random variable
Z, a series of observations based on a suitable finite grid-points in the support [a, b] of the
covariate X .

Let ∆ > 0 be an arbitrary real number. Let xl, l = 1, . . . ,m (with m a positive integer)
be a finite grid of points defined in such a way that the support [a, b] is partitionned by all the
intervals (bins) Il centered at each point xl, with radius ∆, i.e.

Il = {x ∈ [a, b] : |x− xl| ≤ ∆}.

For each l = 1, . . . ,m define also the bloc of pairewise observations

Bl = {(Y1i, Y2i) : 1 ≤ i ≤ n, Xi ∈ Il}.

To obtain observations for the random quantity Z, which depends on the unknown func-
tional parameter θ(·), we must approximate the function θ(·) over each bin Il centered at xl.
To this end, we first choose ∆ small enough in such a way that function θ(·) is invariant and
equal to a real constant θl within each bin Il ; i.e. θ(x) = θ(xl) =: θl, for all x ∈ Il. Then,
we estimate each constant parameter θl by only using the pairewise observations (Y1i, Y2i) in
the corresponding bloc Bl of size nl. This procedure yields a series of empirical values, say
θ̂l, l = 1, . . . ,m approximating the functional copula parameter θ(·), respectively over the
different bins Il, l = 1, . . . ,m.

To estimate each parameter θl, l = 1, . . . ,m, we make use of Kendall’s tau inversion
method. We first compute the empirical Kendall’s tau version with the observations of the
bloc Bl, and then invert the theoretical Kendall’s tau formulae (for the considered copula
family) to obtain an estimate θ̂l for each constant parameter θl. Thus, applying the link
function g, we get a series of empirical values Zl = g(θ̂l), l = 1, . . . ,m, which may be
considered as random observations for the response variable Z = g(θ(X)) = η(X).

It is clear that for each l, θ̂l is an unbiased estimator of θl, because the empirical kendall’s
tau, τ̂l = 2/C2

nl

∑
i<j ∆ij − 1, with ∆ij = I(Y1i < Y1j, Y2i < Y2j) + I(Y1i > Y1j, Y2i > Y2j),

obtained for the bloc Bl is an unbiased estimator of the theoretical version for the population
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from which the bloc Bl is drawn. Since g is known, this implies that Zl = g(θ̂l) is an
unbiased estimator of g(θl), i.e.

EZl = Eg(θ̂l) = g(θl) = g(θ(xl)) = η(xl).

This allows us to consider the following nonparametric model

Zl = η(xl) + σ(xl)εl, l = 1, . . . ,m, (6)

where εl is a white noise with zero-mean and unit variance, σ2(xl) = Var(Zl), and η(·)
represents the calibration function that we want to recover here nonparametrically.

To this end, we propose a wavelet shrinkage approach. That is, we will consider the
function η(·) as a theoretical signal, of which, noisy observations are given by a realisation
of the series Zl = g(θ̂l), l = 1, . . . ,m; and we denoise these observations by using wavelet
transforms. For fixed design models, it is usually assumed, without loss of generality, that
the sample (grid) points xl are within the unit interval [0, 1] and are equidistant ; i.e. xl =
l
m
, l = 1, . . . ,m. Furthermore, the number of sample points xl should be a power of two ; i.e.

m = 2J , J ∈ N∗. These assumptions allow to perform both the Discrete Wavelet Transform
(DWT) and its inverse (IDWT) using Mallat’s (1989) pyramidal algorithm.

Let W be the orthogonal transform matrix associated with a given wavelet basis. Then
applying this algorithm yields an approximation η̂ of the calibration function η after the
following steps :

1. Initialize the vector of wavelet coefficients to a sequence of realizations z = (z1, . . . , zm)

of (Z1, . . . , Zm) ;

2. Apply the forward DWT to obtain a vector of wavelet coefficients : ω = Wz;

3. Apply a thresholding function δ(·) to obtain the estimated coefficients : ω̂ = δ(ω);

4. Apply the inverse IDWT to obtain an approximation of the function η over the grid :
η̂ = W T ω̂,

where W T represents the transpose of W , and η̂ = (η̂1, . . . , η̂m) is a vector of m components
approximating the function η over the grid-points, i.e. η̂l = η̂(xl), l = 1, . . . ,m.

2.3 Asymptotic properties

In this section we discuss asymptotic minimax properties for wavelet shrinkage estimators.
We present both the linear and the nonlinear shrinkage rules.
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Linear wavelet estimator

Consider the pairewise observations (xl, Zl), l = 1, . . . ,m = 2J , with J a given positive
integer, from model (6). Natural estimators for the scale coefficients αj0,k and detail coeffi-
cients βj,k can be respectively defined as :

α̂j0,k =
1

m

m∑
l=1

Zlφj0,k(xl) and β̂j,k =
1

m

m∑
l=1

Zlψj,k(xl).

Given a resolution level jm = j0, the linear shrinkage rule "kills" all the detail coefficients
{βj,k : j ≥ jm, k = 0, . . . , 2j − 1} by posing :

β̂j,k = βj,kI(j < jm),

where I(·) designs the indicator function. This leads to the linear wavelet estimator

η̂jm(x) =
2jm−1∑
k=0

α̂jm,kφjm,k(x),

which corresponds to the estimation of the projection of function η onto the sub-space Vjm ,
element of a multiresolution analysis (Vj)j∈Z generated by the father wavelet φ.

The optimality, in the minimax sense, of the linear wavelet estimator η̂jm is often investi-
gated over Besov function classes Bs

r,q and for Lp-risks. For more details see, e.g., [6], [14].
Under certain regularity conditions including 2jm ' m

1
2s+1 , the linear estimator η̂jm attains

the optimal rate of convergence : m
−s

2s+1 . The next theorem gives an upper bound for the
L2-risk over Besov balls Bs

r,q(M) of radius M > 0. The following hypotheses are needed,
with K(x, y) =

∑
k∈Z φ(x− k)φ(y − k) the projection kernel of the sub-space V0.

(H.1) The father wavelet φ is bounded, compactly supported and admits N + 1 derivatives,
with N a positive integer.

(H.2) There exists an integrable function F , with
∫
|x|N+1F (x)dx <∞ such that : |K(x, y)| ≤

F (x− y).

(H.3) The kernel K satisfies : for all y ∈ R,
∫∞
−∞K(x, y)dx = δ0k, ∀k = 0, 1, . . . , N.

Theorem 2.1 [ Kerkyacharian and Picard (1992)]
Assume that hypotheses (H.1-2-3) are satisfied. Let 0 < s < N+1, 2 ≤ r ≤ ∞, 1 ≤ q ≤ ∞.
If the resolution level jm satisfies : 2jm = m

1
2s+1 , then

sup
η∈Bs

r,q(M)

E‖η̂jm − η‖22 ≤ Cm
−2s
2s+1 . (7)

Proof. It is the same as that of Theorem 10.2 in [14].
Remark. As for r ≥ p = 2, the linear minimax risk is optimal, i.e. of order O(m

−2s
2s+1 )

(see, Corollary 10.3 in [14] ), Theorem 2.1 implies that the linear estimator η̂jm is optimal
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whenever the resolution level jm = log2(m)
2s+1

.

A major drawback of the linear shrinkage rule is that the optimal rate of convergence
depends on the reguarity s of the function η which is unknown in practice. The procedure is
thus not appropriate, when the function η is spatially inhomogemeous with lower regularity.
For such functions one usually relies on nonlinear shrinkage rules.

Nonlinear wavelet estimator

Let j0, jm be two integers with jm > j0 ; j0 designs the coarest resolution level. There
are two popular ways to define the nonlinear (or thresholding) wavelet estimator : hard-
thresholding and soft-thresholding rules. Given a positive threshold t > 0 , the nonlinear
wavalet estimator is generally defined as

η̂∗m(x) =
2j0−1∑
k=0

α̂j0,kϕj0,k(x) +

jm−1∑
j=j0

2j−1∑
k=0

γ∗(β̂jk, t)ψj,k(x)

where γ∗(·, t) is a thresholding function, i.e.

γ∗(x, t) =

sgn(x)(|x| − t)+ for soft-thresholding,

xI(|x| > t) for hard-thresholding

where sgn(x) designs the sign of x and x+ = max(x, 0).
The optimality, in the minimax sense, of the nonlinear wavelet estimator η̂∗m has been also
investigated over Besov function classes and for Lp-risks. The additional hypothesis, com-
pared to the linear case, is the compactness of the function supports. It is proved (see, e.g.
[6], [14]) that nonlinear wavelet estimators are near optimal (up to a logarithmic factor) un-
der certain conditions. The next Theorem gives an upper bound for the L2-risk in a special
case (see, Proposition 10.3 in [14]). The following hypotheses are needed :
(G.1): p = 2, 1 ≤ r = q < 2, s > 1

r
;

(G.2): 2j0 ' m
1

2s+1 ;
(G.3): 2jm ≥ mα/(s− 1

r
+ 1

2
) avec α = s

2s+1
;

(G.4): γ∗(β̂j,k, t) = β̂j,kI(|β̂j,k| > t) and t = c
√

log(m)
m

.

Theorem 2.2 [Härdle et al. (1998)]
Suppose that the father wavelet φ and its associated mother wavelet ψ, are both bounded
and compactly supported. Let N be a positive integer such that the derivative φ(N+1) exists
and is bounded. If Hypotheses (G.1 − 2 − 3 − 4) are satisfied and s < N + 1, then there
exists a positive constant C, large enough, such that

sup
η∈Bs

r,r(M,L)

E‖η̂∗m − η‖22 ≤ C(log(m))γm
−2s
2s+1 , γ = 1− r

2
, (8)

where Bs
r,r(M,L) = {f : ‖f‖srr ≤M and supp(f) ⊂ [−L,L], L > 0}.
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Proof. It is the same as that of Proposition 10.3 in [14]. A sketch is given in Appendix.
Remark. Whenever hypothesis (G.1) holds, we have by Theorem 10.3 in [14], that the
lower bound for the L2-risk over the Besov class Bs

r,r(M,L) is equal to m
−2s
2s+1 . Combining

this with statement (8) entails the near optimality of the nonlinear estimator η̂∗m.

3 Simulation study

In this section we evaluate the finite sample performance of our wavelet shrinkage estimators.
To this end, we borrow from [2], two specific forms of the calibration function η : a linear
specification η(x) = 0.8x − 2 and a quadratic specification η(x) = 2 − 0.3(x − 2/3)2,
and compute the integrated square error of the wavelet estimator. We deal with a uniformly
distributed covariate X on [0, 1]. Data are generated from three parametric copula families :
Clayton, Gumbel and Frank according to the following scheme. For each copula family :

- Generate n ≥ 1 values xi, i = 1, . . . , n for the covariate X , from the uniform law
U(0, 1);

- Compute the parameter value corresponding to each xi : θ(xi) = g−1(η(xi)), where
the link function g−1 is given by : g−1(t) = exp(t) for Clayton, g−1(t) = exp(t) + 1

for Gumbel, and g−1(t) = t for Frank copulas ;

- For each i = 1, . . . , n, generate a pair of values (ui, vi) from the considered copula
with parameter θ(xi) ;

- Create observations for the couple (Y1, Y2) by using Gaussian conditional marginals
: y1i = Φ−1(ui) and y2i = Φ−1(vi) i = 1, . . . , n where Φ is the standard Gaussian
distribution.

The wavelet shrinkage estimator is computed using Mallat’s algorithm described in sub-
section 2.2, where a soft-thresholding is applied with a universal threshold t = σ

√
2 logm.

The least asymmetric Daubechies’ wavelet with 10 vanishing moments was used. We esti-
mate the noise σ by taking the standard deviation of the observed series zl, l = 1, . . . ,m.
All computations are done using the package "WaveThresh" available in R. The integrated
square error, approximated by

ISE =
1

m

m∑
l=1

(η̂(xl)− η(xl))
2,

is reported after 1000 replications. TABLE 1 shows the results for the linear specification
η(x) = 0.8x − 2, whereas TABLE 2 presents the results for the quadratic one η(x) =

2− 0.3(x− 2/3)2.
Note that since the number of sample points m must be a power of two in the wavelet

context, when m varies we multiply the corresponding sample size n by two in order to keep
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the same scale of proportionality. The results show that our wavelet shrinkage estimator has
a good performance, when both m and n increase and the ratio m

n
tends to a constant. We

also observe that the speed of convergence is faster in the quadratic specification than in the
linear specification. Further, One can also see that the perfomance is better in the Clayton
and Gumbel cases than in the Frank case. This can be due to the fact that the approximation
of the Kendall’s tau inversion for Frank copula may not be precise because of the Debye
function.

(m,n) (8, 250) (16, 500) (32, 1000) (64, 2000) (128, 4000) (256, 8000)

Clayton 0.2017 0.1288 0.0911 0.0726 0.0670 0.0587

Gumbel 0.1848 0.1292 0.0926 0.0757 0.0632 0.0620

Frank 0.2511 0.2474 0.1277 0.1211 0.1186 0.1173

Table 1: Integrated square error of the wavelet estimator in case of linear specification :
η(x) = 0.8x− 2.

(m,n) (8, 250) (16, 500) (32, 1000) (64, 2000) (128, 4000) (256, 8000)

Clayton 0.0189 0.0107 0.0066 0.0044 0.0030 0.0027

Gumbel 0.1309 0.0950 0.0773 0.0740 0.0652 0.0666

Frank 0.1410 0.1340 0.1247 0.1238 0.1180 0.1188

Table 2: Integrated square error of the wavelet estimator in case of quadratic specification :
η(x) = 2− 0.3(x− 2/3)2.
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4 Application

In this section we apply our results to meteorological data provided by ANACIM (National
Agency for Civil Aviation and Meteorology of Senegal) during the period 1960-2019. The
extracted data concern n = 708 monthly observations of the variables : maximum rela-
tive humidity (Umax), minimum relative humidity (Umin), expressed in percentage, and
maximum temperature (Tmax) expressed in celcius degree (°C). We are interested in the
influence of the temperature (Tmax) on the dependence between the maximum and the
minimum relative humidity variables. More precisely, we study the effect of temperature
on the strength of the dependence between maximum and minimum relative humidity. Fig-
ure 1 shows scatterplots and histograms of the two variables Umax and Umin and their
transformed conditional marginals (Û1, Û2) estimated non parametrically by using formulas
defined in (5), with bandwidth h = 0.1 chosen arbitrarily. One can see that there is an up-
per tail dependence between the two humidity variables. Now the question is : Does the
temperature have an effect on this dependency ?
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Figure 1: Scatterplots and Histograms of (a) the humidity variables Umax, Umin and (b)

their transform conditional marginals.

In order to apply the methodology described in Subsection 2.2, where we restrict the
values of the covariate in [0, 1], we transform our covariable Tmax into a uniform scale in
[0,1] by setting :

X =
Tmax−min(Tmax)

max(Tmax)−min(Tmax)
.

We can now apply this methodology. We select m = 2jm points in the interval [0, 1], with
jm = 4, 5, 6, and binwidth ∆ = 1/2m. We obtain the results shown in Figure 2, where
we represent the Kendall’tau as a function of the temperature ( which represents here the
covariate X) and for jm = 6. We obtain the sames curves for jm = 4 and jm = 5.
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We can observe a same behavior of the Kendall’s tau parameter τ for both copulas Clay-
ton and Gumbel. The temperature does not influence the dpendency between the two hu-
midity variables if it takes a scaled value less than 0.7 corresponding to 25°C. But from this
value, the temperature produces some fluctuations on the Kendall’s tau behavior ; meaning
that the temperature influences the dependency between the two humidity variables.
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Figure 2: Wavalet estimation of Kendall’s tau τ for Clayton and Gumbel copulas : jm = 6.

5 Conclusion

We have applied a wavelet-based regression approach to estimate the relationship between
the copula dependence parameter and some covariate in the framework of a conditional cop-
ula model. This approach presents some advantages such as the fast computation of the
wavelet estimators and their near optimality over a wide classe of regular functions and for
a large range of Lp-risks. Our results have been applied for a dataset to analyse the influence
of the temperature on the dependence structure between maximum and minimum relative
humidity variables. We find that, relatively to this dataset, the temperature influences the de-
pendence structure of these two humidity variables, only when it takes larger values greater
than for example 25°C. Using a general likelihood ratio test to assess the significativity of
this influence could be interesting issue for the future. As well, it might be interesting to
compare our approach to that of [2], who utilized a local linear estimation approach for the
calibration function η.
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