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Abstract

This paper focuses on the analysis of spatial data aggregated in
space and time when the boundaries of geographic regions change
over time. This can occur when reported cases of a health outcome
are counted in regions over time and these regions change occasionally.
We extend the spatial root-Gaussian Cox Process (RGCP), which uses
the square-root link function rather than the usual log-link function,
to the spatio-temporal case. A simulation study shows the algorithm
can identify a spatio-temporal risk surface, and an analysis of malaria
incidence in India is presented.

Keywords: EMS algorithm; spatial statistics; Gaussian random field; Ma-
trn correlation and AR(1).

1 Introduction

When disease dynamics are affected in both space and time over longer pe-
riods hold more than one census of the population, computationally efficient
algorithms and models providing interpretable inference are necessary. Be-
sag et al., (1991) have formulated the dominant methodology for modeling
random variation in disease risk for data collected over a short time interval.
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These methods cannot handle aggregated data collected for extended periods
with spatial boundaries changing during the study period. Case counts in
a particular area are quite common because point locations for health out-
come data are rare due to privacy and data quality issues. Besides, mapping
disease risk often involves working with data that have been spatially aggre-
gated to census regions or postal regions, either for administrative reasons
or confidentiality. When studying rare diseases, data must be collected over
a long period to accumulate a meaningful number of cases. These long peri-
ods can result in spatial boundaries of the census regions changing over time
Nguyen et al. (2012).

Disease mapping aims to highlight the basic structure of scattered spatial
health data, but it is relevant to apply such a methodology when the un-
derlying risk is meant to be spatially, temporarily, and also, spatio-temporal
structured. In the present study, we are concerned with the latter analysis,
aggregated data is highly influenced by boundary changes over the study
period in such a case investigating the temporal effect is optimally impor-
tant. Besides, spatio-temporal analysis has additional benefits over purely
spatial or temporal/time series because it allows the investigator to simul-
taneously study the persistence of patterns over-time and illuminate any
unusual patterns. Of course, various continuously-indexed spatio-temporal
process models have been constructed to characterize spatio-temporal de-
pendence structures, but the computational complexity for model fitting and
predictions grows in a cubic order with the size of the dataset, and applica-
tion of such models is not feasible for large datasets and varying boundaries
over data collection period (see, Mason et al.,1975; Lawson et al.,2000 and
Sylvain et al. ,2015).

To this end, to extend purely spatial models to spatio-temporal models with
varying boundaries, Fan et al. (2011) and Nguyen et al. (2012) have con-
sidered local-EM algorithms. But the drawback of these methodologies with
local EM algorithms is that it is completely non-parametric and when their
smoothing matrix is large, as is often the case, the implementation becomes
computationally intensive. Brown and Stafford (2021) have proposed an al-
ternative to local EM based on a root-Gaussian Cox Process (RGCP). It uses
model-based inference and is computationally efficient. Moreover, it uses a
square-root link function, rather than the usual log link, which leads to a
generalized EMS algorithm. The current study extends the purely spatial
model Brown and Stafford (2021) by incorporating temporarily varying risk
surface and intensity functions.
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The analysis of spatio-temporal data requires that both temporal correla-
tion and spatial correlation be taken into account. While we consider both
temporal and spatial variation simultaneously, it adds significant complexity
to the data analysis process for two major reasons. First, continuous and dis-
crete changes of spatial and non-spatial properties of spatio-temporal objects.
Second, the influence of collocated neighboring spatio-temporal objects on
one another. To reduce such complexity a simple, but commonly used class of
spatio-temporal covariance model assumes a separable form that factors into
a purely spatial and a purely temporal component. Besides, a geostatistical
approaches for modelling spatio-temporal data rely on parametric covariance
models and rather stringent assumptions such as stationarity, separability,
and full symmetry. Thus, the present study has considered Matern spatial
correlation with AR(1) temporal variation provides a recipe for computing
the smoothing matrix at the S-step.

The paper is organized as follows. Sound motivations are written in the
Introduction section. Section 2 describes the model formulation and head-
ing to discretized the entire study regions to define disjoint regions and also,
discetized the risk surface λ(s, t); a root-Gaussian Cox Process is clearly
defined and a Spatio-temporal EMS algorithms is derived. Besides, the im-
plementation procedures are clearly written. The basic findings of the study
are presented and discussed in Section 3. Finally, concluding remarks are
provided in Section 4.

2 Model Formulation

In the geostatistical approach (see for example, Cressie 1993; Gelfand et al.,
2010; Cressie and Wikle, 2011) data coming from monitoring networks are
assumed to be realizations of a continuously indexed spatial process (random
field) changing in time denoted by

Y (s, t) = {y(s, t) : y(s, t) ∈ D ⊆ <2 ×<}

which is indexed in space by s ∈ <2 and in time by t ∈ <

Cox processes provide useful and frequently applied models for aggregated
spatial point patterns where the aggregation is due to a stochastic environ-
mental heterogeneity, see e.g. Diggle (1983), Cressie (1993), Stoyan et al.
(1995), and the references therein. A Cox process is ’doubly stochastic’ as
it arises as an inhomogeneous Poisson process (IPP) with a random inten-
sity measure. The random intensity measure is often specified by a random
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intensity function or as we prefer to call it an intensity process or surface.
Here we have considered to two hierarchical level. The first level specifies a
distribution for the location Xi and time Ti of each case i given an under-
lying risk surface λ(s, t). The second level specifies the process by which a
portion of these event locations (Xi, Ti) is censored or aggregated to produce
observed data Y consisting of postal codes or names of census regions. Thus,
in the present study, we have considered a natural model for the times and
locations of cases is an in homogeneous Poisson process with

[Xi, Ti] ∼ Poisson Process[λ(s, t)O(s, t)].

Here i = 1, 2, ...., K indexes. The offset O(s, t) surface is the expected inten-
sity of cases.

The ultimate objective of the present study is to derive an algorithm for
making inference on a relative risk λ(s, t) conditional on the point locations
(Xi, Ti) when they are observed directly and the aggregated Yi for those
cases whose point locations have been censored. The likelihood function of
an inhomogeneous Poisson process for λ(s, t) (see Illian et al., 2008) is

L(λ(., .); {Xi, Ti}) =

[
K∏
i=1

O(Xi, Ti)λ(Xi, Ti)

]
exp

[
−
∫ ∫

O(u, v)λ(u, v)dudv

]
.

(1)

Now, we have a space-time process and the notation above could correspond
to the Xi being residential locations of individuals within a common geo-
graphic region M where events happened at random times Ti.

2.1 A Discretized IPP

In the context considered here event locations Xi are area-censored, with
observations xi aggregated to a map of disjoint regions Sij over time period
t with Mj =

⋃
{Sij; j = 1, ..., Ji}. For such spatio-temporal data the Sij

might be geographic reporting regions - postal codes or enumeration areas
are examples. The observed data become counts Yij of the number of events
for region Sij over a period of time T rather than event locations measured
at a particular time Ti. More formally we set Y = {Yij; j = 1, 2, ..., Ji} where
Yij = {Xi ∈ Sij, Ti ∈ C} has a Poisson distribution with mean E(Yij) =∫
C

∫
Sij
λ(u, v)O(u, v)dudv, where C = [1, T ].
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It is convenient to discretize λ(s, t) and define it as a piecewise constant func-
tion. To discretize λ(s, t) we divide the study area M =

⋃Ji
j=1Mj into a num-

ber of disjoint regions Q` each with centroid q` where Q = {Q`; ` = 1, ..., L}.
The Q with the smallest number of elements would be the regions obtained
by overlaying all of the boundaries of the maps Mj. Another possible Q is
the cells of a pixelated grid over M and observation time Ci, i = 1, ..., T . We
can now approximate λ(s, t) by a piecewise constant function formed from
the integrated values

λi` =

∫
Ci

∫
Q`

λ(u, v)

‖Ci‖‖Q`‖
dudv

so that λ(s, t) ≈ λ(q`, ci); t ∈ Ci, s ∈ Q`, and ci is the mid point of interval
Ci. We can now write the distribution of Yij as

Yij ∼ Pois

[∑
`

λi`Oij`

]
where

Oij` =

∫
Ci

∫
Sij∩Q`

O(u, v)dudv.

When the offset O(s, t) is constant within time periods with

O(s, t) = Oi(s), t ∈ Ci

then

Oij` = ‖Ci‖
∫
Sij∩Q`

Oi(u)du.

Since Sij ∩Q` is often empty (each census region is small and overlaps with
only a small number of Q`), Oij` is often zero.

The number of events in disjoint regions are independent and the log-likelihood
for λ is

L(λ) =
∑
ij

{
Yij log

[∑
`

λi`Oij`

]
−
∑
`

λi`Oij`

}
. (2)

2.2 A Root-Gaussian Cox Process

For an non-homogeneous Poisson process it is common to model the intensity
function as a random effect rather than a parameter. For example, we may
model the intensity using a latent Gaussian process where λ(s, t) = g[θ(s, t)],
g is a link function, and
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θ(s, t) ∼ GP{µ(s, t), ρ[(s, t), (s
′
, t

′
)]}

where ρ is a spatio-temporal covariance function.

Now, we have considered the unusual step of defining the link function as
g[θ(s, t)] = [θ(s, t)]2 rather than g[θ(s, t)] = exp[θ(s, t)], of course a popular
choice for such models is the log-Gaussian process but here we propose a
root-Gaussian cox process because it conveniently leads to comparators of
the Spatio-temporal EMS algorithms while the log-Gaussian process does
not. We discretize the Gaussian process by

θ(s, t) = θi`; s ∈ Q` and t ∈ Ci

so that λi` = θ2i`. Setting θ = {θ11, θ22, ..., θLT} and assume that θ is dis-
tributed as a Gaussian random field(GRF): N (α,Σφ,ψ,σ2) over a period of
time. We further assume α = 1 acknowledging the possibility that the in-
tensity surface is constant with any systematic variability captured by the
offset function. A spatial temporal covariance matrix is very dense since all
time points and spatial locations are dependent. Moreover, if we consider
spatial location size n1 and time points n2, the resulting matrix gets very
large. For example, if n1 = 100 and n2 = 40 and now we have to work with a
4000 x 4000 covariance matrix. To make computations with less demanding
and more efficient, we formulate the covariance matrix in separable form.
The covariance is the product of a valid 2d spatial and a valid 1d temporal
covariance/ correlation function with

Cov[θ(s, t), θ(s
′
, t

′
)] = σ2ρ1(‖s− s

′‖;ψ)ρ2(|t− t
′ |;φ).

The covariance matrix can be written as the Kronecker product of the two
separate covariance matrices

Σ = σ2V1(ψ)⊗ V2(φ)

where V1(ψ) has size L×L and having elements [V1(ψ)]jj′ = ρ1(‖sj− sj′‖;ψ)
and similarly, V2(φ) has size T × T and having elements [V2(φ)]ii′ = ρ2(|ti −
ti′ |;φ). The property of Kronecker product,

[Σ(σ2, ψ, φ)]−1 = σ2[V1(ψ)]−1 ⊗ [V2(φ)]−1

is useful, where [V1(ψ)]−1 = P1, [V2(φ)]−1 = P2. Moreover, we have consid-
ered P1 as the precision matrix of a Gaussian Markov Random Fields and
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P2 as that of an autoregrssive AR(1). AR processes of order one are a par-
ticularly parsimonious model choice, in which the next value of the process
depends only on the previous one and its precision matrix is tridiagonal. It
is denoted by P 2(φ) and expressed by

P2(φ) =
1

φ2


1 −φ . . . 0
−φ 1 + φ2 φ . . .
...

. . . . . . . . .

0 . . . φ 1

 .
P1(ψ) is also sparse, with non-zero entries only for pairs of cells which are

neighbors (see, Brown and Stanford, 2021). The penalized log-likelihood of
θ is

Lp(θ) =
∑
ij

{
Yij log

[∑
i`

Oij`θ2i`

]
−
∑
i`

Oij`θ2i`

}

− 1

2σ2
(θ − 1)T [P1(ψ)⊗ P2(φ)](θ − 1).

(3)

Note the first term of Lp is of the same form as the likelihoods (2) but where
it has been reparametrized in terms of θ while the second has the form of a
generalized quadratic penalty for that likelihood.

2.3 A Spatio-Temporal EMS Algorithm

We can now consider various approaches for estimating λ. In what follows we
derive expressions for the first two derivatives of Lp(θ). The first produces
an iteration (9).

Hereafter we are re-index k as k = (i − 1)L + ` and differentiating once
with respect to θk gives

∂Lp(θ)

∂θk
= 2

∑
ij

{
Yij

Oij`θk∑
mOijmθ2(i−1)L+m

− 2Oij`θk

}
− P T

k (θ − 1)

= 2
∑
ij

{
Oi`
θk

[
Yij

Oij`θ2k
Oi`
∑

mOijmθ2(i−1)L+m

]
− 2Oi`θk

}
− P T

k (θ − 1)

= 2µ(λr)k − 2Oi`θk − P T
k (θ − 1).

(4)

Here

P =
1

σ2
P1(ψ)⊗ P2(φ)
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and
Ok =

∑
ij

Oij`,

µ(λr)k = θk
∑
ij

YijOij`∑
mOijmλ(i−1)L+m

, (5)

and i and ` are fixed.

We may now differente with respect to θ in vector -matrix notation, with
Θ = diag(θ) and

∂Lp(θ)

∂θ
= 2OΘ−1µ(λ)− 2Oθ − P (θ − 1)

= 2OΘ−1µ(λ)− 2Oα− 2O(θ − 1)− P (θ − 1)

= 2OΘ−1(µ(λ)− η(λ))− 2(O +
1

2
P )(θ − 1)

= 2OΘ−1µ̃(λ)− 2(O +
1

2
P )Θ−1(λ− η(λ)).

(6)

Setting ∂Lp(θ)
∂θ

= 0 and solving for λ yields

OΘ−1µ̃(λ) = (O +
1

2
P )Θ−1(λ− η(λ)) (7)

(λ− η(λ)) = Θ(O +
1

2
P )−1OΘ−1µ̃(λ) (8)

λ = S(λ)µ̃(λ) + η(λ). (9)

Differentiating Lp with respect to θi` and solving the resulting equations
yields a generalized EMS iteration for λ

λr+1 = S(λr)µ̃(λr) + η(λr) (10)

where µ̃(λr) = µ(λr)− η(λr), η(λr) = θr

S(λr) = Θr

{
O +

1

2
Σ−1φ,ψ,σ2

}−1
OΘ−1r

= Θr

{
O +

1

2 σ2
P1(ψ)⊗ P2(φ)

}−1
OΘ−1r

(11)

with Θr = diag(θrk), O = diag(Ok). Note that at each iteration of the algo-
rithm we set θr =

+
√
λr.
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2.4 Implementation

The algorithm implemented in R and the set of procedures summarized here-
under.

Step 1: The spatial surface is discretized on a rectangular area contain-
ing the study region with lattice of square grid cells Gi` with θ(s, t) = θ̂i`;
(s, t) ∈ Gi` and ` = 1, 2, ..., L; i = 1, 2, ..., T .

Step 2: The discretized model is parametrized as λi` = θ2i` with

[θ11, θ22, ..., θLT ]T ∼N (1, σ2Σ−1ψ,φ),

where Σ−1ψ,φ is the Kronecker product of a Matern correlation matrix and a
temporal AR(1) precision matrix.

Step 3: The Matern correlation matrix is approximated using a Markov ran-
dom field on the square grid of the G`, as described in Lindgren et al.(2011).
This matrix is computed with the maternGmrfPrec function in the geostatsp
package (Brown, 2015), and includes the edge correction from section 5.1.4
of Rue and Held (2005). Similarly, the AR(1) temporal precision matrix is
constructed as a sparse-band matrix specifying its nonzero superdiagonals.

Step 4: The EMS recursion is implemented as

λ(r+1) = 2σ2Θ(r)S̃
−1

Θ(r)µ(λ(r)) + Θ(r)[1− 2σ2S̃
−1
O1]

µ(λr)k = θk
∑
j

YijOij`∑
mOijmλ(i−1)L+m

S̃ = 2σ2O + Σ−1ψ,φ.

(12)

Since the S̃ matrix does not change with the iteration r; a sparse Cholesky de-
composition of S̃ can be performed once and used to solve S̃b = Θ(r)µ(λ(r))
for b at each iteration.

Step 5: Convergence of the EMS iteration is achieved when the first deriva-
tives in (6) are all below a threshold.
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3 Results

3.1 Simulation study and validation with Kentucky
data

Simulation studies are used to obtain empirical results about the performance
of statistical methods, particularly for the evaluation of new methods and al-
gorithms. Similarly, to evaluate the performance of the newly formulated
root-Gaussian Cox process for Spatiotemporal models, we have considered
the geographic boundaries of the state of Kentucky in the United States
of America where data is aggregated by administrative regions PUMA and
county. We have simulated events in four different time points, Fig 1 (c, d,
e, and f) and also, heading to aggregate the events by PUMA, Fig 1(l and i)
and County, Fig 1(h and j).

The procedures are here, we have simulated the incidence of a fictitious
disease in the state of Kentucky, aggregating events by county and also by
Public Use Microdata Area (PUMA). Population-based offsets are available
from the US census at the fairly fine spatial resolution of 3157 census tracts,
shown in Figures 1a and 1b. Note that the offsets here are expected in-
tensity per unit of surface area, not the expected area-level counts used for
spatially discrete models. A spatiotemporal root-Gaussian Cox process was
simulated using a Matern correlation function with a shape parameter of 1,
and standard deviation of 0.25, and a range of 100km. For a time we have
used exponential covariance with a variance of 1 and a scale of 10. We have
considered 1100 grid cells and 4-time points.

The estimated and true intensity risk surface λ(s, t) are compared at each
time point. For example, the first simulated risk surface Fig 2a compared
with Fig 2b at the same time 1. Similarly, the estimates Fig 2c, 2e, and 2g
were compared to their counterpart time point Fig 2d, 2f, and 2h, respec-
tively. With the comparison we have estimated through simulation and true
value/real datasets, we have shown close to the same outputs and thus, the
newly formulated RGCP is recommended for the analysis of aggregated data
whenever spatial boundary changes over the study period time t.

3.2 Validation with India Malaria Data

Here again, we have considered Indian malaria data in the same procedures
as the states of Kentucky in the USA. This could be considered the second
validation of the newly formulated RGCP. We have considered Indian malaria
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Figure 1: Simulated root-Gaussian Cox process aggregated by county and Public

Use Micro-data Area (PUMA). Background map c©Stamen Design
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Figure 2: Estimanted and true intensity surfaces at each time point for simulated
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cases due to real data availability, and it is a highly malaria-prevalent nation.
Besides, the country carries 2% of the global malaria case burden and 2% of
global malaria deaths WHO (2021).

Figure 3 shows the proportion of malaria cases reported in four states in
the west of India which are of the strain Plasmodium falciparum, the strain
of malaria most dangerous to humans. The data come from the National
Vector Born Disease Control Programme (see Cohen et al., 2010), and are
reported at the district level. Figures 3a, 3b, 3c, and 3d show the raw pro-
portions of samples that were positive for Plasmodium falciparum, with the
counts ranging from 0 to 16,000 with a median of 200. District boundaries
are shown superimposed in Figure 3i. The red lines show the boundaries of
the 123 districts in 1999, the green lines show new boundaries created when
the number of districts expanded to 135 in 2000, and the blue lines show
additional boundaries from 141 districts in 2001 and 2002.

An RGCP was fit to these data using an offset surface for each year cal-
culated as number of samples tested in each district multiplied by the raw
proportion for the entire study region in that year, and converted to an inten-
sity by dividing each districts expected count by its surface area. Similarly,
we have made comparison the real data analysis Fig (3a - 3d) with the es-
timated risk surface Fig (3e - 3h) and founding the same conclusion with
section 3.1 above.

4 Concluding Remarks

This paper has demonstrated how an extension of the local-EM algorithm
from Brown and Stafford (2021) can be used for modelling spatio-temporal
data. Compared to the spatial model in Brown and Stafford (2021), the
spatio-temporal model in this paper involves a much larger smoothing ma-
trix, fitting the model with four time points quadruples the number of rows
and columns increasing the number of total entries 16-fold. By exploiting
sparsity of the smoothing matrices and the fact that the smoothing matrix
does not change over EM iterations, an efficient and tractable algorithm is
developed for a difficult spatio-temporal problem.

The simulation study presented shows the algorithm produces estimated risk
surfaces which are very similar to the truth, and the application to the In-
dia malaria data shows the algorithm can produce useful results for a real
dataset. Further research is required to estimate the model parameters and
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Figure 3: Plasmodium falciparum as a proportion of all recorded Malaria cases,
by district in the India states of Rajasthan, Madhya Pradesh, and Maharashtra,

for selected years (a-d). Superimposed boundaries and predictions from an
RGCP (e-h). Background map c©Stamen Design
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prediction intervals for the estimated surface, the methods used by Brown
and Stafford (2021) for spatial data should translate directly to the spatio-
temporal case.
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