
Performance of Bayesian Priors in Validation of Correlate of 

Protection for High Efficacy Vaccine Trials   
Igwebuike Enweonye and Edith Uzoma Umeh 

Department of Statistics, Nnamdi Azikiwe University, PMB 5025, AWKA. 

 

ABSTRACT 

Although the use of intermediate clinical endpoint or correlate of protection (CoP) has increased over 

the years, the validation of CoP for high efficacy vaccine trials has remained a challenge due to sparse 

data and conventional statistical methods which are not adequate. Be it in the frequentist or the Bayesian 

world, the meta-analytic approach is a well-accepted method of CoP validation. However, the full joint 

bivariate models suffer computational issues. And there is a push for the use of individual level instead 

of aggregate data in validation process. In this quest, the Bayesian approach is emerging as the future 

as regards the validation of CoP but one recurring criticism about this method is its application of prior 

distributions. To elucidate which makes better sense, in the context of CoP validation, the non-

informative (NIP) and weakly informative prior (WIP) distributions are compared in a meta-analytic 

approach using simulated data. It was found that, 1) there are no convergence issues when either of the 

models are used, 2) WIP models take about 20% longer time than NIP models to converge, and 3) the 

NIP models consistently perform better than the WIP models. 

Keywords: Validation, Correlate of protection, Clinical endpoint, Bayesian Hierarchical Modelling, 

prior distribution 

1. Introduction 

 

Vaccines are mostly given as prophylactics - of which the true clinical 

endpoint is difficult to measure if there is no disease outbreak.  It turns out 

that the development and regulatory approval of vaccines relies largely on 

the immunogenicity data. The protective threshold of a vaccine is 

desirable in identifying the level of an immune marker above which 

vaccinees have a defined probability of being protected, and to make a 

statement over the vaccine efficacy. Such quantity defines the vaccine 

response threshold, used to calculate the response rate (Voysey et al. 

2018). Sadly, during clinical development, vaccine correlate of protection 

(CoP) is generally unknown (Callegaro and Tibaldi, 2019).  

 CoP are used in lieu (Buyse and Molenberghs, 1998) when clinical 

endpoints of primary interest are hard or unethical to measure.  CoP is 

useful because it can be measured earlier, more conveniently, or more 

frequently than the true endpoint (Ellenberg and Hamilton, 1989). Its use 

in clinical studies has increased, necessitating the development of sound 

statistical methods in its validation process (Burzykowski et al., 2006). 



Health authorities around the world are opening doors to CoP, for 

example, between 2010 and 2012, the United States Food and Drug 

Administration (US FDA) approved 45 percent of new drugs applications 

based on various surrogate endpoints (FDA, 2018). A beneficial correlate 

of protection generally allows for more efficient drug development 

programs (FDA, 2018). 

The Bayesian statistics provide a flexible tool for complex applications 

including the validation of correlate of protection. The beauty of Bayesian 

inference lies in the prior distribution which is its backbone, although, it 

has caused controversies among the scientific community; with some 

arguing that prior distribution introduces external information from the 

data. This paper compares the performances of the non-informative (NIP) 

and weakly informative (WIP) prior distributions in a meta-analytic 

approach for validation of CoP using Gibbs sampler. 

Gibbs Sampling is Markov Chain Monte Carlo (MCMC) method which 

involves successive sampling from the complete conditional densities. For 

the working of MCMC algorithm, we refer to Gelman and Shalizi (2013), 

Gelman et al. (2013), Gallager (2013) and Congdon (2014). 

 

2. Study Design and Methods 

True clinical and CoP endpoints were simulated using data from a 

previous efficacy clinical trials as starting values. Each data set consists 50 

trials characterised by a 1:1 randomization of size of 100 subjects per trial 

leading to 5,000 subjects for each data set. Bayesian hierarchical model 

using Markov Chain Monte Carlo (MCMC) was applied to each of the 

simulated data sets. In turn the models combined non-informative prior 

and then weakly informative prior distributions with simulated data to 

obtain posterior information for inferences. Each MCMC model has 3 

parallel chains with adaptation at every 1,000 simulation steps. The final 

inference used 10,000 draws while 1,000 draws were discarded as burn-in 

samples. Standard inference calls R to run the model through Just another 

Gibbs Sampler (JAGS) and extract predicted values for the monitored 

parameters: variance-covariance matrix 𝐷 between random treatment 

effects of the true and CoP endpoints and coefficient of determination, 𝑅2.  



Let 𝑆𝑖𝑗 and 𝑇𝑖𝑗 represent the continuous and binary underlying values of 

the CoP and the true endpoints, respectively, for subject 𝑗 in trial 𝑖 and 𝑍𝑖𝑗  

an indicator for treatment effect. That a subject 𝑗 in trial 𝑖 has the disease is 

depicted by 𝑇𝑖𝑗 = 1. And further consider the meta-analytic framework in 

the single trial setting, in which the units are randomized subgroups of 

trials. At the first level of the hierarchical Bayesian meta-analytic 

approach, assuming full mediation, reduced bivariate models are specified 

as follow: 

𝑆𝑖𝑗 =  𝛼0 + (𝛼1 + 𝑎𝑖 )𝑍𝑖𝑗 + 𝑒𝑖𝑗                            (1) 

𝑙𝑜𝑔𝑖𝑡 𝑇𝑖𝑗 =  𝛽0 + (𝛽1 + 𝑏𝑖 )𝑍𝑖𝑗                             (2) 

Where,   

(
𝑆𝑖𝑗 

𝑙𝑜𝑔𝑖𝑡 𝑇𝑖𝑗 
) ~ 𝑁 [ (

𝛼0 + (𝛼1 )𝑍𝑖𝑗 

𝛽0 + (𝛽1 )𝑍𝑖𝑗 
) , ∑]               (3) 

And, 

(
𝑎𝑖 

𝑏𝑖
) ~ 𝑁 [ (

0
0

) , 𝐷] , 𝐷 = (
𝑑𝑎𝑎 𝑑𝑎𝑏 

𝑑𝑎𝑏 𝑑𝑏𝑏 
)                  (4) 

𝛼′𝑠 and 𝛽′𝑠 are fixed effects of treatment 𝑍𝑖𝑗 on the endpoints in trial 𝑖, 𝑎𝑖  

and 𝑏𝑖  are the trial specific random effects of treatment on the endpoints. 

The error structure 𝑒𝑖𝑗  are CoP associated normally distributed random 

error terms with zero mean and variance 𝛿2. Further ∑ is the joint error 

structure of the fixed effects. 

Provided the variance-covariance matrix 𝐷 of the random treatment effects 

of endpoints in eqn. (4) is positive definite, the validation is captured by 

means of the trial-level coefficient of determination,  

𝑅𝑡𝑟𝑖𝑎𝑙(𝑟)
2 =  𝑅𝑏𝑖|𝑎𝑖

2 =  
𝑑𝑎𝑏

2

𝑑𝑎𝑎 𝑑𝑏𝑏 
                    (5) 

At the second level of the hierarchical model, hyper priors for the fixed 

effects are specified. For NIP models: 

𝜇𝑠 ~ 𝑁(0, 𝛿𝜇𝑠
2 ), 

𝛼0 ~ 𝑁(0, 𝜏𝛼0
2 ), 



𝛼1 ~ 𝑁(0, 𝜏𝛼1
2 ), 

𝜃𝑇 ~ 𝐵𝑒𝑟𝑛(𝑝𝑇),  

𝛽0 ~ 𝑁(0, 𝜏𝛽0
2 ), 

𝛽1 ~ 𝑁(0, 𝜏𝛽1
2 ),            (6) 

𝛿𝜇𝑠
−2 ~ 𝑈(0,100) 

𝜏𝛼0
−2 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4) 

𝜏𝛼1
−2 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4), 

𝜏𝛽0
−2 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4) 

𝜏𝛽1
−2 ~ 𝐺𝑎𝑚𝑚𝑎(10−4, 10−4), 

Next, specify a prior distribution for the association between the treatment 

effects of the two endpoints and the random effects. As the hyper-prior 

distribution for the variance-covariance matrices, a Wishart distribution is 

assumed: 

𝐷−1 ~ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅𝐷),              

∑−1 ~ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑅∑)        (7) 

The NIP differs from the WIP model in the assignment of priors for the 

variance-covariance matrix 𝐷 of the random effects. All other priors 

remain same as for both models. However, the difference is huge as the 

coefficient of determination depends on the matrix. Chung et al. (2015) 

proposed for WIP model the default prior as a function of the variances 

𝑑𝑎𝑎 and 𝑑𝑏𝑏 and the correlation between the two varying random effects 

𝑎𝑖 and 𝑏𝑖 given by, 

𝑝(𝐷) ⍺ |𝐷|1/2 = 𝑑𝑎𝑎 𝑑𝑏𝑏 √1 − 𝜌2     (8)  

The trial-level surrogacy is assessed using the posterior means for 𝑅2 eqn. 

(5). A sufficiently large 𝑅2 is an indicator of a good surrogate. Beside 

statistics, clinical and epidemiological judgments, as deemed fit by the 

experts, are taken into account before a surrogate can be finally adopted. 

Modelling was performed in Just another Gibbs Sampler in R (RJAGS) as 

an interface to JAGS (JAGS 4.3.0 release July 18, 2017). In JAGS there is 



no flexibility of specifying any one sampling method rather it runs as a 

black box and chooses the most efficient sampling method. For details on 

the working of MCMC algorithms refer to Congdon (2014) and Gelman et 

al (2013). 

3. Results 

With a range of vaccine efficacy (VE = 30%-100%), a total of 70 

scenarios were simulated in R. The simulated data contain both true binary 

(protected / not protected) outcome and a continuous immunogenicity 

values as correlate of protection, using the models eqns. (1) and (2). 

Each scenario sample size n=5,000 subjects. Randomisation was 

performed within 50 trials in a 1:1 ratio to treated or untreated groups of 

100 subjects in each trial. 

The following parameters were used in data simulation: 𝛼0 = (4.609, 

5.458); 𝛼1 =5.458;  𝛽0  = (-2.0, -3.5,-4.0, 4.5,-5.0,-5.6); 𝛽1 = (-1.43, -1.45, -

1.7591, -3); Var(𝑎𝑖 ) = 10; Var(𝑏𝑖 ) = 4. The correlation between the 

treatment random effects ρ = Corr(𝑎𝑖 ,𝑏𝑖 ) = √0.9, with 𝑅2= 0.9. Vaccine 

efficacy VE = {1- p(T=1|Z=1) / p(T=1|Z=0)}x100% where p(T=1|Z=1) 

and p(T=1|Z=0) are the probabilities of disease among vaccinated and 

unvaccinated subjects, respectively.  

The simulated data were loaded and prior values specified for MCMC 

steps. The modelling steps were performed for both NIP and WIP alike. 

Each MCMC step used 1000 samples as burn in, while 10,000 iterations 

were used for inference. The sampler adapts its behaviour to maximize 

efficiency after every 1000 iterations. Trace plots reveal the stability and 

proper mixing of the monitored parameters 𝑅2 and 𝐷 matrix across the 3 

parallel chains. 

Table 1: Comparison of results for VE=30% 

                    Non informative prior (NIP) model Weakly informative prior (WIP) model 

Param Mean SD 

naïve 

SE 

Time 

series SE Mean SD 

naïve 

SE 

Time 

series SE 

Dmat[1,1]   4.0533 0.92149 0.00532 0.01425 3.9449 0.89939 0.00519 0.01394 

Dmat[1,2]   6.5132 1.42206 0.00821 0.01474 6.1999 1.35424 0.00782 0.01435 

Dmat[2,2]   11.5323 2.44915 0.01414 0.02106 11.2986 2.365 0.01365 0.02288 

𝑹𝟐 0.9087 0.03288 0.00019 0.00062 0.8639 0.04793 0.00028 0.00151 

Dmat[1,1]   5.9584 1.33923 0.00773 0.01745 5.8872 1.29869 0.00750 0.01861 

Dmat[1,2]   9.0683 1.97891 0.01143 0.01612 8.7076 1.87628 0.01083 0.01970 

Dmat[2,2]   15.1804 3.22186 0.01860 0.02447 14.889 3.09118 0.01785 0.03218 



𝑹𝟐 0.9098 0.03115 0.00018 0.00052 0.8657 0.04572 0.00026 0.00141 

Dmat[1,1]   4.7558 1.07016 0.00618 0.01543 4.6378 1.04233 0.00602 0.01675 

Dmat[1,2]   6.8041 1.48787 0.00859 0.01626 6.4635 1.41823 0.00819 0.01803 

Dmat[2,2]   10.5903 10.5903 0.01316 0.02588 10.327 2.19202 0.01266 0.02647 

𝑹𝟐 0.9203 0.03052 0.00018 0.00072 0.8733 0.04697 0.00027 0.00179 

Dmat[1,1]   2.8118 0.64071 0.00370 0.00901 2.7921 0.62779 0.00363 0.00895 

Dmat[1,2]   4.3419 0.96447 0.00557 0.00912 4.1523 0.92241 0.00533 0.00942 

Dmat[2,2]   7.7676 1.67559 0.00967 0.01542 7.6992 1.63248 0.00943 0.01532 

𝑹𝟐 0.8643 0.04683 0.00027 0.00093 0.8036 0.06496 0.00038 0.00189 

Dmat[1,1]   4.794 1.09171 0.00630 0.01424 4.6427 1.04932 0.00606 0.01602 

Dmat[1,2]   6.8001 1.49962 0.00866 0.01297 6.4538 1.42252 0.00821 0.01638 

Dmat[2,2]   10.7203 2.29062 0.01323 0.02058 10.6217 2.22064 0.01282 0.02160 

𝑹𝟐 0.9005 0.03531 0.00020 0.00069 0.8454 0.05433 0.00031 0.00169 

Dmat[1,1]   3.7355 0.84472 0.00488 0.01136 3.6527 0.81543 0.00471 0.01128 

Dmat[1,2]   5.8277 1.28343 0.00741 0.01231 5.5241 1.21619 0.00702 0.01332 

Dmat[2,2]   10.1792 2.17406 0.01255 0.02019 9.9498 2.09989 0.01212 0.02141 

𝑹𝟐 0.8938 0.03753 0.00022 0.00070 0.8403 0.05427 0.00031 0.00164 

 

Though the MCMC samples often have high autocorrelation, the naive 

MCMC error disregards the potential auto-correlation, and therefore the 

naive MCMC error is not realistic. The time-series MCMC error takes this 

auto-correlation into an account for the estimation of the error. As 

expected higher time-series MCMC than naïve MCMC errors are observed 

for both NIP and WIP models. Coefficient of determination is consistently 

higher for NIP compared to WIP models in low, moderate and high 

vaccine efficacies as shown in tables 1-3. 

Table 2: Comparison of results for VE=70% 

                     Non informative prior (NIP) model Weakly informative prior (WIP) model 

param Mean SD 

naïve 

SE 

Time 

series SE Mean SD naïve SE 

Time 

series SE 

Dmat[1,1]   5.7900 1.60136 0.00925 0.08041 5.8065 1.67774 0.00969 0.09424 

Dmat[1,2]   7.5704 1.78781 0.01032 0.06125 7.1525 1.71157 0.00988 0.05861 

Dmat[2,2]   10.6336 2.31954 0.01339 0.03841 10.2679 2.18146 0.01260 0.03198 

𝑹𝟐 0.9365 0.02997 0.00017 0.00101 0.8658 0.06055 0.00035 0.00338 

Dmat[1,1]   3.2587 0.81166 0.00469 0.02334 3.2397 0.80682 0.00466 0.02318 

Dmat[1,2]   4.8893 1.10962 0.00641 0.02221 4.6432 1.04631 0.00604 0.01540 

Dmat[2,2]   8.0961 1.75978 0.01016 0.02259 7.9282 1.67500 0.00967 0.01743 

𝑹𝟐 0.9096 0.03658 0.00021 0.00099 0.8437 0.06246 0.00036 0.00256 

Dmat[1,1]   5.1164 1.26863 0.00733 0.04437 5.0483 1.25725 0.00723 0.04832 

Dmat[1,2]   7.0250 1.59357 0.00920 0.04003 6.7147 1.51666 0.00876 0.03542 

Dmat[2,2]   10.2632 2.23856 0.01292 0.04211 9.9694 2.11865 0.01223 0.02873 

𝑹𝟐 0.9427 0.02557 0.00015 0.00074 0.8991 0.04429 0.00026 0.00210 

Dmat[1,1]   4.3508 1.09760 0.00634 0.03569 4.5347 1.14335 0.00660 0.04065 



Dmat[1,2]   5.8134 1.34244 0.00775 0.02562 5.6567 1.31957 0.00762 0.03049 

Dmat[2,2]   9.1136 1.97332 0.01139 0.02381 9.1855 1.96122 0.01132 0.02800 

𝑹𝟐 0.8553 0.05192 0.00030 0.00128 0.7718 0.07445 0.00043 0.00245 

Dmat[1,1]   3.5487 0.88040 0.00508 0.02654 3.6140 0.89989 0.00520 0.02802 

Dmat[1,2]   5.2356 1.21270 0.00700 0.02243 4.9960 1.16611 0.00673 0.02066 

Dmat[2,2]   9.1817 1.98300 0.01145 0.02238 9.1420 1.93127 0.01115 0.01720 

𝑹𝟐 0.8318 0.05771 0.00033 0.00128 0.7590 0.07882 0.00046 0.00247 

Dmat[1,1]   3.5222 0.88773 0.00513 0.02868 3.5165 0.90040 0.00520 0.02946 

Dmat[1,2]   4.7017 1.07601 0.00621 0.01988 4.4540 1.02670 0.00593 0.01745 

Dmat[2,2]   7.0281 1.54080 0.00890 0.01787 6.9352 1.48350 0.00856 0.01723 

𝑹𝟐 0.8969 0.04313 0.00025 0.00131 0.8185 0.07140 0.00041 0.00284 

 

Table 3: Comparison of results for VE=95%                                                                                                         

                     Non informative prior (NIP) model Weakly informative prior (WIP) model 

param Mean SD 

naïve 

SE 

Time  

series SE Mean SD 

naïve 

SE 

Time 

series SE 

Dmat[1,1]   1.0901 0.6997 0.00404 0.06956 1.1261 0.8512 0.00492 0.08368 

Dmat[1,2]   2.3933 1.1262 0.00650 0.09791 1.3831 0.9997 0.00577 0.06248 

Dmat[2,2]   8.8972 1.8953 0.01094 0.01606 9.5796 2.1271 0.01228 0.02597 

𝑹𝟐 0.6344 0.2219 0.00128 0.01568 0.2529 0.1930 0.00111 0.01062 

Dmat[1,1]   1.9628 1.2498 0.00722 0.15305 1.6457 1.1713 0.00676 0.11282 

Dmat[1,2]   3.5079 1.4537 0.00839 0.14525 2.1113 1.1799 0.00681 0.08162 

Dmat[2,2]   8.4924 1.8466 0.01066 0.02173 8.9194 1.9596 0.01131 0.02292 

𝑹𝟐 0.7868 0.1548 0.00089 0.01148 0.3749 0.2163 0.00125 0.01250 

Dmat[1,1]   1.7748 1.0017 0.00578 0.10410 1.1600 0.8601 0.00497 0.07584 

Dmat[1,2]   4.0094 1.5388 0.00888 0.14085 2.0780 1.3820 0.00798 0.12022 

Dmat[2,2]   11.837 2.5109 0.01450 0.02125 12.557 2.7445 0.01585 0.03471 

𝑹𝟐 0.8022 0.1345 0.00078 0.00863 0.3570 0.2213 0.00128 0.01490 

Dmat[1,1]   1.1874 0.7746 0.00447 0.07767 1.1094 1.2385 0.00715 0.16124 

Dmat[1,2]   2.8639 1.3421 0.00775 0.12163 1.7543 1.3439 0.00776 0.13620 

Dmat[2,2]   10.480 2.2441 0.01296 0.01847 11.0808 2.4535 0.01417 0.04168 

𝑹𝟐 0.6989 0.2030 0.00117 0.01621 0.3277 0.2165 0.00125 0.01338 

Dmat[1,1]   2.0189 1.2892 0.00744 0.14674 1.8263 1.4999 0.00866 0.15756 

Dmat[1,2]   3.6996 1.4835 0.00857 0.13498 2.4119 1.5062 0.00870 0.11473 

Dmat[2,2]   9.0266 1.9749 0.01140 0.02515 9.5311 2.0957 0.01210 0.02728 

𝑹𝟐 0.7988 0.1285 0.00074 0.00733 0.3972 0.2152 0.00124 0.01243 

Dmat[1,1]   2.5260 1.2680 0.00732 0.12323 2.5511 1.5449 0.00892 0.16747 

Dmat[1,2]   4.8010 1.6178 0.00934 0.14030 3.7371 1.5216 0.00879 0.10025 

Dmat[2,2]   11.164 2.4055 0.01389 0.02296 11.4913 2.4507 0.01415 0.03154 

𝑹𝟐 0.8510 0.0971 0.00056 0.00598 0.5298 0.1783 0.00103 0.00994 

 

4. Conclusion  

The comparison of coefficient of determination shows that 𝑅2 is 

consistently better for NIP than for WIP model for all vaccine efficacy, 



VE=30% -100%. None of both models experienced computational issues. 

However, WIP models take about 20% longer time than NIP model to 

converge.  The NIP model outperforms the WIP model and suggests a 

better validation tool. 

 

5. References 
[1]. M. Voysey, M. Sadarangani, A. J. Pollard, and T. R. Fanshawe (2018). Computing threshold 

antibody levels of protection in vaccine clinical trials: An assessment of methodological bias," PloS 

one, vol. 13, no. 9. 

[2]. A. Callegaro and F. Tibaldi (2019). Assessing correlates of protection in vaccine trials: statistical 

solutions in the context of high vaccine efficacy. BMC medical research methodology, vol. 19, no. 1, 

p. 47. 

[3]. M. Buyse and G. Molenberghs (1998). Criteria for the validation of surrogate endpoints in 

randomized experiments. Biometrics, pp. 1014-1029. 

[4]. S. S. Ellenberg and J. M. Hamilton (1989). Surrogate endpoints in clinical trials: cancer.  

Statistics in medicine, vol. 8, no. 4, pp. 405-413. 

[5]. T. Burzykowski, G. Molenberghs, and M. Buyse (2006). The evaluation of surrogate endpoints. 

Springer Science & Business Media. 

[6]. U.S Food and Drug Administration (2018, July 24). Surrogate endpoint resources for drug and 

biologic development. https://www.fda.gov/drugs/development-resources/surrogate-endpoint-

resources-drug-and-biologic-development. 

[7]. A. Gelman and C. R. Shalizi (2013). Philosophy and the practice of bayesian statistics. British 

Journal of Mathematical and Statistical Psychology, vol. 66, no. 1, pp. 8-38. 

[8]. A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari and D. B. Rubin (2013). Bayesian 

data analysis. CRC press. 

[9]. R. G. Gallager (2013). Stochastic processes: theory for applications. Cambridge University Press. 

[10]. P. Congdon (2014). Applied bayesian modelling, vol. 595. John Wiley & Sons. 

[11]. Y. Chung, A. Gelman, S. Rabe-Hesketh, J. Liu, and V. Dorie (2015). Weakly informative prior 

for point estimation of covariance matrices in hierarchical models. Journal of Educational and 

Behavioral Statistics, vol. 40, no. 2, pp. 136-157. 

 

 


	Performance of Bayesian Priors in Validation of Correlate of Protection for High Efficacy Vaccine Trials
	1. Introduction
	2. Study Design and Methods
	3. Results
	4. Conclusion
	5. References

