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Abstract

Small area estimation methods are generally based on models which have assumptions of normal
errors, but many types of data do not have a normal distribution. Several approaches have been
suggested to deal with skewed data, and here we investigate transformations (with and without bias
correction) and compare them with previous work with robust models which are less affected by
the tails of the distributions. We investigate the properties of these models with a real data set of
Italian retail businesses which mimics a structural business survey. Transformation based approaches
improve small area estimates, but are not as effective as the best robust approaches. The assessment
of which robust approaches are best is qualitatively the same as in previous work, and corroborates
the earlier findings with a different data set.

1 Introduction

Small area estimation (SAE) is a well established methodology with many adaptations to particular
situations and topic areas. The application of small area estimation to business surveys has however
lagged behind its use in other topic areas for two main reasons. First, the main approach to SAE
is through the use of multilevel models which assume that the errors are normally distributed, whereas
variables in business surveys are characterised by skewed distributions (Cox and Chinnappa, 1995; Rivière,
2002) which often give rise to skewed distributions of residuals in fitted models. Therefore the model
assumptions are violated, and the skewed distributions generate outliers with respect to the model which
affect the fits. Secondly, sampling in business surveys is informative, because the largest units are
completely enumerated, and larger units have a higher probability to be included than smaller units.
However, most model-based approaches assume that sampling is noninformative.

Business surveys, however, also have some characteristics which are helpful in SAE, at least from the
perspective of a national statistical office (Rivière, 2002). There is a business register which contains
some auxiliary variables at the unit level which can be used for modelling, and these auxiliary variables
are known for all the units in the population. Here we focus on unit level models which can make use of
this detailed information.

Different strategies have been proposed for dealing with the special characteristics of business sur-
veys in SAE applications. One approach is to use robust SAE based on M-estimators and M-quantile
estimators. These deal with the challenge of outliers using robust models that are less affected by outly-
ing observations, so that the assumption of normal errors is less problematic. A decision is still needed
whether to model the unobserved parts of the data without outliers, or whether some allowance for out-
liers is needed in the predictions for the unobserved part of the population. Smith et al. (2021) examined
a variety of approaches in a real dataset where the outcomes are known. These include some approaches
which incorporate the sampling weights, and therefore also account for the informative sampling in busi-
ness surveys. For an overview of small area estimation approaches for informative data see Parker et al.
(2023).

Regression relationships among business survey data are often found to be multiplicative, both ac-
cording to economic theory and from observation (Chandra and Chambers, 2011). They are therefore
frequently analysed using a log transformation and a linear model assuming normally distributed errors.
This is equivalent to the errors on the original scale being lognormally distributed. So a second approach
for skewed data is to transform the data so that the regression errors are approximately normal, and then
to apply the standard SAE models with the transformed data. This procedure has its own challenges,
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because predictions are made on the transformed scale, and näıve inverse transformation (back to the
original scale) induces a bias. Some methods have been proposed for bias correction, including generating
datatsets on the original scale using the transformed model.

In this paper we examine in detail the transformation-based approaches, and use a real data example,
where the outcomes are known, to evaluate the performance of the different approaches within this
broad strategy. In section 3 we present the variety of transformation-based approaches which have been
proposed in SAE with a unified notation, consistent with Smith et al. (2021). In section 2 we summarise
the setup of the dataset to which these methods will be applied. In section 4 we discuss the results of
a design-based simulation from the data, and compare them with the robust methods from Smith et al.
(2021).

2 Business survey data

Smith et al. (2021) used data from the retail sector in the Netherlands; these data were not available for
the current research, so we have used a similar population of retail businesses in Italy derived from the
AIDA dataset (Bureau van Dijk, 2015). We make some modifications to obtain a known population with
complete information on turnover from 2020, which is needed in order to have ‘the truth’ against which
to compare the estimates from the different small area procedures described below. We also need some
auxiliary information on which to base a sample design and sample selection, and in keeping with practices
for Structural Business Surveys in several countries we use the information from two years previously
as the register/frame information. The final dataset comprised 71568 retail businesses, divided into 36
industry groups defined by the NACE sectors, with auxiliary information from 2018 on (i) turnover, (ii)
size class, and (iii) number of working persons.

We use the population size from 2020 and population variances calculated from the 2018 population
data as the inputs to a Neyman allocation on strata defined by size classes and industry groups. Some
variances are missing (usually because N = 1), so need to be imputed. There was one extreme standard
deviation (for the small size stratum in NACE 4740), which was set to NA before any further processing,
so that it too would be imputed. The allocated sample size was 3635.

3 Transformation-based approaches to small area estimation for
skewed data

Lyu et al. (2020, section 1.3) give a brief overview of the methods developed for small area estimation
based on transformations. We follow their approach, but provide more detail of the different estimators,
presented with a standard notation based on estimating a population total, which is the usual target
for business surveys (and which is also consistent with Smith et al. (2021)). We compare outputs with
the direct HT and GREG estimators, and with a näıve application of the empirical best linear unbiased
predictor (EBLUP) approach (see Smith et al. (2021) for details of those).

There are two main strategies for transformation. One is to generate multiple simulated datasets
data using errors on the transformed scale, then back-transform and calculate the estimates with the
simulated data on the original scale, thereby avoiding any bias through back-transforming estimates
calculated on the transformed data; this approach is covered in section 3.1. A second approach is to
calculate the estimates with the transformed data and then to apply a suitable bias correction in the
back transformation to obtain (approximately) unbiased estimates on the original scale; the properties of
this approach are left for further investigation. Both approaches require a unit level model fitted to the
transformed data y∗

y∗ = Xβ∗ + Zu∗ + e∗. (1)

where a ∗ designates the use of the transformation.

3.1 Empirical best prediction

The basic idea comes fromMolina and Rao (2010), where the expected value of the conditional distribution
of the unobserved data given the sample data is approximated efficiently by a numerical procedure. This
approach is extended for transformations by Rojas-Perilla et al. (2020), and the stages are:

1. select a transformation, fitting the shift parameter to obtain λ̂ if necessary, and obtain y∗i = Tλ̂(yi)
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2. use the transformed data in the unit level model (1) to estimate β̂
∗
, and the variance components

σ̂2
u and σ̂2

e ; calculate γ̂ind = σ̂2
u/

(
σ̂2
u + n−1

indσ̂
2
e

)
3. for l in 1, . . . , L

• take random draws vind from N
(
0, (1− γ̂ind)σ̂

2
u

)
for each value of ind and ei from N

(
0, σ̂2

e

)
for each value of i

• obtain pseudopopulation l as y
∗(l)
i = xT

i β̂
∗
+ û∗

ind + vind + e∗i , choosing ind such that i ∈ ind

• back-transform the pseudopopulation values to obtain y
(l)
i

• calculate the estimate of interest for each ind with pseudopopulation l, ŷ
(l)
ind

4. take the average of the statistic of interest for each ind over the l replicates, ŷEBP
ind = 1

L

∑
ŷ
(l)
ind.

Here we follow Rojas-Perilla et al. (2020) in considering four transformations (Table 1), although
others are available. First is the standard log transformation. Since zero values are present in the
dataset, we need to shift the data by an amount s, deterministically chosen so that yi + s > 0; it is
important that min(yi + s) is not too small to avoid creating high leverage points on the transformed
scale. Second is the log-shift transformation (Yang, 1995) which is basically the same except that the
shift parameter, labelled λ in line with the data-driven transformation notation above, is fitted from the
data (for details see Rojas-Perilla et al. (2020)).

The third transformation is the Box-Cox transformation (Box and Cox, 1964), where the shape of
the transformation is driven by the data. The deterministic shift is again needed to ensure that the data
are positive. Under the Box-Cox transformation, y∗i is bounded below by 1/λ if λ > 0 and above by
−1/λ if λ < 0. The fourth transformation, the dual power transformation (Yang, 2006) was developed
to avoid the bounds of the Box-Cox transformation, but otherwise is rather similar in its behaviour. All
four transformations are available with the EBP methodology in the R package emdi (Kreutzmann et al.,
2019). In common with the log transformation, the Box-Cox and dual power transformations require
strictly positive inputs, so if there are zero or negative values in the data a shift s, which should not be
too small, must be applied. In the example data below we use the reasonably standard yi + 1, but we
note that the results may have a certain sensitivity to this value.

transformation Tλ

log* log(yi + s)

log-shift log(yi + λ̂)

Box-Cox*


(yi + s)λ − 1

λ
ifλ ̸= 0

log (yi + s) ifλ = 0

dual power*


(yi + s)λ − (yi + s)−λ

2λ
ifλ ̸= 0

log (yi + s) ifλ = 0

Table 1: Transformations considered for business survey data and their corresponding functions. Those
labelled * require a deterministic shift parameter s in the case of zero and/or negative values in order to
ensure that the functions are defined on the range of the data.

4 Application to AIDA data with known outcomes

Repeated sampling simulations with the data and design described in section 2 were undertaken, fitting
a model with Xβ∗ in equation (1) given by

Xβ∗ = β0 + β1t
2018
i,ind + β2wpi,ind + β3

(
t2018 × wp

)
i,ind

(2)

when 2018 turnover (t2018) is used directly as a predictor or

Xβ∗ = β0 + β1 log(t
2018
i,ind) + β2wpi,ind + β3

(
log(t2018)× wp

)
i,ind

(3)
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(a)

(b)

Figure 1: Mean squared errors under repeated sampling of a range of robust estimators (see Smith et al.
(2021) for definitions) for (a) Dutch tax data and (b) Italian AIDA data.
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Figure 2: Mean squared errors under repeated sampling of the empirical best prediction (EBP) estimator
with a range of transformations, using the Italian AIDA data.

when log(turnover) is used; wp represents the number of working persons. We use the relative bias(
100

500yind

∑500
k=1 ŷ

k
ind

)
−100 and relative root mean square error 100

yind

[
1

500

∑500
k=1

(
ŷkind − yind

)2] 1
2

to evaluate

the performance of the different transformations and estimators.
First we examine the mean squared errors of the variety of robust estimators explored by Smith et al.

(2021) using the Netherlands tax dataset and the new Italian AIDA dataset. Summary plots are shown
in Fig. 1. The GREG is not such an improvement over the HT estimator in the Italian data as it was
in the Dutch example, and is only marginally better than HT. The näıve M-quantile (MQ) is good in
both datasets, even though it is not a consistent estimator, and the consistent version MQCD has much
larger MSEs. The Weighted M-quantile estimator is consistent and nearly as good as MQ; in fact the
weighted estimators in general perform slightly better for the Italian data than they did for the DUtch
data. For the Italian example the näıve M-quantile estimator just beats unweighted, bias-adjusted M-
quantile (MQWR) with the best bϕ, though this best tuning parameter would be unknown in practice.
So we conclude that the performance of the different estimators is essentially the same in both datasets,
which is a useful replication of the findings of Smith et al. (2021). We note that the MSEs are consistently
higher in the Italian dataset, probably reflecting a larger time difference between the auxiliary and the
‘survey’ information. The MQ and MQWR estimators are the best and have similar performance, and we
therefore prefer MQ which delivers the good performance without the added complication of estimating
a second tuning parameter.

Second, we produce a similar plot (Fig. 2) comparing the different versions of the EBP using the
transformations from table 1, and using either x or log(x) as a predictor alongside the number of working
persons and their interaction (equations (2) and (3)). The direct and EBLUP scatters are identical with
those from Fig. 1(b), though the scale is different. The log and log-shift models which use turnover as
a predictor have long tails of MSEs, and in a few instances these estimates can blow up to very large
values (not plotted). The Box-Cox has only one very large MSE, and the dual shift estimator seems to be
better. Nonetheless, the MSEs are substantially reduced in the models with log(turnover). The log-shift
with a deterministic shift and the dual power transformation have the best average MSE performance,
but all four transformations have similar MSEs.

We can compare the best performances among the EBP estimators with the best of the robust
estimators; comparative statistics of the rrmse are shown in Table 2. It is clear that the best robust
models considerably outperform the transformation-based estimators based on mse. This is interesting
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log (determin- dual M-quantile weighted bias-adjusted
istic shift) power näıve M-quantile M-quantile

näıve (bϕ = 1)
median rrmse 14.76 14.78 7.77 8.01 9.60
mean rrmse 15.56 15.55 9.91 9.94 10.11

Table 2: Comparison of man and median relative root mean squared error performance across industry-
level domains in the AIDA dataset, with the best EBP estimators (both using log(turnover) in the
predictor variables) and the best robust estimators.

because the robust models use turnover as a predictor, whereas the best transformation-based models
always use log(turnover). The robust fitting procedures appear to deal effectively with the skewness in
the predictors in the process of robustifying against the skewness of the residuals.
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