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Abstract 

The Fine-Gray hazard [5] has been widely used in the competing risk trial to directly assess the 

effect of a covariate on the cause-specific incidence. However, we were concerned if the cause-

specific incidences do not show treatment effects properly, the Fine-Gray hazards should result in 

biased estimates of treatment effects. The cause-specific incidence is affected by failures of 

competing causes as well as treatment effects. Thus, this study compares the performance in the 

efficacy estimation between the cause-specific incidence and the cause-specific hazard. 

On the other hand, recent studies found unexpected effects of censors on the Fine-Gray model 

analysis. For instance, the estimation of the censoring distribution can affect the accuracy of an 

analysis using Fine-Gray hazard or censoring complicates estimation in the Fine–Gray hazard. 

These warnings were based on observed phenomena but the root cause of the unexpected 

phenomena caused by censoring has not been clarified. This study numerically examines the 

dependency of Fine-Gray hazard on the distribution of censoring. 

 

 

1. Introduction 

Clinical studies often require consideration of potential competing risks, as the occurrence 

of other events may preclude the primary event of interest. According to the Scopus, the 

“competing risk” has been dealt with more than 1000 studies a year since 2020. Despite the 

popularity, the interpretation of the results obtained from the competing risk analysis has often 

confused clinical researchers. The objective of this study is to propose a simple and clear 

method for evaluating the effect of treatment in competing risk trials. Gray [6] demonstrated an 

example where two cause-specific cumulative incidences cross each other despite their hazards 

are constant. This finding led him to develop the so-called Fine-Gray hazard to directly assess 

the effect of a covariate on the cause-specific incidence. Since then, cause-specific incidence 

with Fine-Gray hazard have been widely used in competing risk trials [2] and regarded as “the 

most popular model and the default method to estimate the incidence of outcomes over time in 

the presence of competing risks” [1]. Nevertheless, some researchers warn against using the 

Fine-Gray hazard [1] [11]. Regarding the issue, this study examines a fundamental concern. 

That is, Fine-Gray hazards should result in misleading estimates, if cause-specific incidences 

fail to represent treatment effects properly. This might happen since observed incidences could 

be considerably affected by not only the treatment but also the failure times of competing 

causes. We examine associations between treatment effects and incidences using a simulation 

model for life prolonging effects. 
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On the other hand, recent studies found unexpected effects of censors on the Fine-Gray 

model analysis [4] [9] [10]. These warnings were based on observed phenomena but the root 

cause of the unexpected phenomena caused by censoring has not been clarified. Recently, it is 

mathematically shown that the Fine-Gray hazard depends on independent censoring [8]. This 

paper further investigates the dependency numerically.  

 

 

2. Methods.  

2.1 Notation and symbols 

We consider homogeneous (no covariates) competing risk failure time model. Let T and J 

be random variables to denote the failure time and the failure type, respectively. C denotes 

censoring time independent of T. We observe min ( , )T C  and ( )I T C =  , where ( )I   is the 

indicator function. ( ) ( )F t P T t=   is termed cumulative incidence, ( ) ( ) 1 (t)S t P T t F=  = −  

survivor function, ( ) ( ) /f t dF t dt=  incidence, and ( ) ( ) / ( )t f t S t =  hazard.  

We assume two types of failure, namely J=1 or 2. J=1 denotes the type of interest and J=2 

the competing cause, or any other cause. Failures due to J=i is termed Type-i failure (i=1, 2). 

Define a type or cause-specific incidence ( )
0

( ) lim , /if t P t T t J i
→

=   +  =  , hazard ( )i t =

( )
0

lim , | / ( ) / ( )iP t T t J i t T f t S t
→

  +  =   = , and cumulative incidence ( ) ( )iF t P T < t,J i= =  in 

the presence of the other failure type (i=1, 2). It holds that ( )t =
1 2( ) ( )t t + ,

( ) ( ) ( )i if t t S t=  and 
1 2( ) ( ) ( )f t f t f t= + . Fine-Gray hazard ( )t  is defined as 

 
0

( ) lim ( , 1) | ( ) ( , 2) /t P t T t J t T T t J
→

=   +  =    =  1 1( ) / {1 ( )}f t F t= − . 

  

2.2 Performance of cause-specific incidence and hazard. 

Motivated from the setting of clinical trials for evaluation of cancer therapies, Gray [6] 

dealt with two groups, namely Group 1 and Group 2, and two types of failure Type-1 and Type-

2. Let 𝜆(k)i denote the Type-i specific hazard for Group k. He assigned 𝜆(1)1= 𝜆(1)2=3 for Group 

1, and 𝜆(2)1=2 and 𝜆(2)2=1 for Group 2. Then, Type-1 and Type-2 cumulative incidences cross 

each other despite their hazards are constant (Fig 1). If we regard the example as a clinical trial 

and consider Group 1 and 2 as a control and a treatment arm, respectively. Then, the treatment is 

very effective, since that reduces the hazard from 3 to 2 for Type-1 failure and 3 to 1 for Type-2 

failure. Nevertheless, as pointed by Gray, cause-specific cumulative incidences fail to present 

the treatment effect properly. On the other hand, the cause-specific hazard for Type-1 failure 

remains unaffected by Type-2 failure since Type-1 failure is independent of Type-2 failure, and 

therefore shows the treatment effect properly. Thus, Gray’s model shows that cause-specific 

hazard is more appropriate than cause-specific incidence when failure types are mutually 

independent and hazards are constant. 

In our simulation, we also deal with two groups, namely a control and a treatment arm, 

however the failure times are correlated with each other and their hazards are increasing with 

time. In simulations dealing with clinical trials, the treatment effect is usually specified as 

decreasing of the hazard. Whilst, the objective of the study is to compare the performance of 

incidence and hazard in efficacy estimation; therefore, for fair comparison, we develop a 

simulation model that specifies life-prolonging effect rather than hazard reduction as a treatment 

effect. 

Let TC
i and T *i denote Type-i failure (i=1, 2) for the control and treatment arm respectively. 

Let U and V independently follow the uniform distribution Unif (0,1). Define TC
1=100𝑈 and T 
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C
2=150(𝑈 + 𝑉) 2⁄  for the control arm. The longest lifetime due to the cause of interest, TC

1, is 

100, while that due to the competing cause, T C
2, is 150. The mortality due to the disease of 

interest is higher than that due to the competing cause. The hazard 𝜆C
1(t) for TC

1 is 

1 (100 − 𝑡)⁄ , and the hazard 𝜆C
2(t) for T C

2 is 4𝑡 (1002 − 2𝑡2)⁄  for 𝑡 < 75 and 2 (100 − 𝑡)⁄  

for 𝑡 > 75. TC
1 and T C

2 are correlated with Corr (TC
1, T

 C
2) = 2-1/2. 

Whilst, let 𝑈∗  and 𝑉∗  independently follow Unif (0, 1) independently of U and V. Define 

T*1=100𝛼𝑈∗ and T*2=150(𝑈∗ + 𝑉∗) 2⁄  for the treatment arm, where 𝛼 is a treatment effect on 

Type-1 failure which varies 1.1~1.5. The treatment does not affect failure time due to the Type-2 

failure. Before performing those simulations, we reproduce the Gray’s paradoxical phenomenon 

using the life-prolonging effect model.  

For each group, 10,000 cases of (T1, T2) are generated. T = min (T1, T2) is the observed 

failure time and J, defined by J = i if T = Ti, is the observed failure type. As for the estimation of 

the hazards, partitioning the time axis into a number of intervals with length 0.1, we apply the 

discrete time model for competing risk analysis [3].  

Since each failure time corresponding to T1 or T2 is not identifiable for (T, J) data [7], we 

should determine the significance of the treatment effect based on the observed incidence F1(t) 

and hazard Λ1(t) for Type-1 failure in the presence of Type-2 failure. The question we are 

concerned is which of F1(t) and Λ1(t) would represent the treatment effect more properly in the 

presence of Type-2 failure. The effects of Type-2 failure on F1(t) and Λ1(t) depend on the 

correlation of Type-1 and Type-2 failures as well as the mortality due to Type-2 failure. The 

consideration leads to the simulations in 3.1.  

 

2.3 Dependency of censoring on Fine-Gray hazard  

Numerical study to examine dependency of on censoring Fine-Gray hazard ( )t  is 

performed. 1,000 cases of (T1, T2) are generated to obtain ( )t and three censoring patterns are 

employed to investigate the effect of censoring on ( )t . 

It may be possible to modify the definition of the Fine-Gray hazard so as to be independent 

of independent censoring. Instead, we propose a simple and clear method for estimating 

associations between covariates and treatment effects in the presence of Type-2 failures. 

 

2.4 Cause-removal incidence 

 Since the likelihood for the competing risk analysis factors into a component for each failure 

type, it is customarily to estimate Type-1 specific hazard (𝜆1) regarding failures of Type-2 as 

censored at the individual’s failure time. Besides, it is also customarily to estimate the overall 

survivor function (S) regarding failures of Type-2, as well as Type-1, as failures. Then, Type-1 

incidence (f1=S𝜆1) is obtained. We propose to regard failures of Type-2 as censored even in the 

calculation of the overall survivor function. Let S1(t)=exp {− ∫ 𝜆1(𝑡)𝑑𝑡   denote the survivor 

function for Type-1 failure regarding the failure times of Type-2 as censored. Then, define f
1(t) 

=S1(t)𝜆1(𝑡), hereafter termed cause-removal incidence function. Association between the cause-

removal cumulative incidence F*
1=∫ 𝑓1

∗𝑑𝑡 and the treatment effect is numerically examined on 

the Gray’s example.  

 

 

3. Results 

3.1 Simulation for comparing the performance of cause-specific incidence and hazard  

For a fair comparison of performance between the hazard and the incidence, as explained in 
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2.2, the treatment effect was specified as a life-prolonging effect with the hazard ratio changing 

over time. Taking into account the paradoxical example by Gray, the simulation is conducted 

separately when the effect on Type-2 failure is large and when it is small. 

Fig 2 (a) shows the cumulative incidence (F1) for the control and the treatment arm when 

TC
1=100𝑈, T C

2=100(𝑈 + 𝑉) 2⁄ , T*1=130𝑈∗, and T*2=170(𝑈∗ +  𝑉∗) 2⁄ . The cumulative 

incidences cross each other despite hazard for TC
1, 1 (100 − 𝑡)⁄ , is higher than that for T*1, 

1 (130 − 𝑡)⁄  for t > 0. Thus, the paradoxical phenomenon observed by Gray is reproduced 

when the two failure times are correlated and their hazards are increasing over time. Whilst, Fig 

2 (b) shows that the log cumulative hazards for TC
1 and T*1 do not cross each other and show 

the treatment effect properly. Besides, they approximately follow the proportional hazards 

model. The results indicate the cause-specific hazard is more appropriate than the cause-specific 

incidence in confirming the treatment effect when the treatment has larger life-prolonging effect  

on the competing failure than the primary failure. 

Secondly, we perform simulations with TC
1=100𝑈, TC

2=150(𝑈 + 𝑉) 2⁄ , T*1=100𝛼𝑈∗ and 

T*2= 150(𝑈∗ + 𝑉∗) 2⁄  (𝛼 =1.1~1.5), 𝛼 denotes a life prolonging effect of a treatment. We 

obtain Type-1 cumulative incidence F1(t) and hazard 𝛬1(t), in the presence of Type-2 failure, 

for the control and treatment arm. Fig 3 (a) shows the log cumulative hazard (lnCumHaz1) and 

(b) log cumulative incidence (lnCumF1). Fig 3 (c) shows overall survival rate (S) by 𝛼. Both 

cumulative hazards and incidences clearly show the life prolonging effect by 𝛼. For testing the 

difference in the cause-specific hazard 𝜆1(t) between the control and the treatment arm, the 

Mantel-Cox, or logrank, test was performed. The results indicate that cause-specific hazard 

𝜆1(t) and incidence f1(t) =S(t)𝜆1(t) represent the treatment effect properly when the treatment 

has a negligible effect on Type-2 failure. 

 

3.2. Dependency on censoring of Fine-Gray hazard  

Numerical study is performed to examine the degree of the dependency on censoring of the 

Fine-Gray hazard (t). For comparison, the cause-specific hazard 1(t) is also examined. 

Let X, Y and Z independently follow Unif (0, 1). Define Type-1 and Type-2 failure time as 

T1=80X+20Y and T2=20X+80Y, respectively. Corr (T1, T2) is approximately 0.5. 1,000 cases of 

(T1, T2) are generated and Fine-Gray hazard 𝜆𝜙(t) and cause-specific hazard 𝜆1(t) are obtained. 

The cumulative hazard with no censor is regarded as “true” and effects of censoring on them are 

examined by simulations. 75% of the 1,000 cases are censored. Censoring pattern is either 

C1=50Z, C2=10+50Z, or C3=20+50Z; the support of C1, C2 and C3 are (0, 50), (10, 60) and (20, 

70), respectively. 1,000 iterations are performed for each Ci to obtain 𝜆𝜙(t) and 𝜆1(t) affected 

by Ci. Each iteration produces cumulative hazards 𝛬(t) for 0 < t < 100. We obtain an average 

𝛬̅(𝑛) of 𝛬(t) for n < t < n + 1 over 1,000 iterations. 

Fig 4 demonstrates the cumulative hazards 𝛬̅(𝑛) by the censoring pattern for (t) (left) 

and 𝜆1(t) (right). Since the frequency of 𝛬(t) for 𝑛 > 65 is considerably decreased, 𝛬̅(𝑛) is 

omitted for 𝑛 > 65. It is clearly indicated that 𝜆𝜙(t) depends on the censoring pattern, whilst 

𝜆1(t) is little affected. The earlier the censoring time, the stronger the influence. 

 

3.3. Cause-removal incidence as applied to the example by Gray 

Fig 5 shows the cause-removal cumulative incidence F*
1 for control and treatment arm in 

the Gray’s example. They are no longer cross each other and shows the treatment effect 

properly. Mathematical consideration on the association between the cause-removal incidence, 

the cause-specific survivor function and the cause-specific hazard will appear elsewhere [8]. 
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4. Conclusion  

1. When the treatment effect on the competing cause is negligible, both the cause-specific 

cumulative hazard and the cause-specific cumulative incidence properly represent the 

treatment effect, regardless of whether two failure types are mutually independent or not.  

2. When the effect of a treatment on the competing cause is large, the cause-specific hazard and 

the cause-removal incidence are appropriate for evaluation of medicinal efficacy than the 

cause-specific incidence.  

3. The Fine-Gray hazard depends on the distribution of independent censoring. The earlier the 

censoring, the more severe the effect of them. 
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(a) Cumulative incidence F1            (b) log cumulative hazard 1 

 

 

 

 

 

 

 

 

 

Fig 2. (a) Cumulative incidences are crossing and fail to represent life-prolonging effect 

properly, (b) log cumulative hazards represent treatment effect properly. 

Fig 1. Gray’s example:  

Cumulative incidences cross each other, despite their hazards are constant. 
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(a) lnCumHaz1     (b) lnCumF1 

  

(c) S  

 

Fig 3. (a) log Cumulative hazard, (b) log cumulative incidence, and (c) Overall survival rate 

by 𝛼. 

 

 

  

Fig 4. Fine-Gray hazard and Cause-specific hazard by Censoring type. 
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Fig 5. Cause-removal cumulative incidence for the control and treatment arm in the Gray's 

example. 


