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Abstract 

Data science has emerged as a very strong, visible, and publicly recognized label for problem-

solving using ever-growing, large datasets and new data sources such as administrative 

registers, satellites and aircrafts, webcams, data voluntarily provided by the internet users, data 

harvested from the web and so on. The applications of data science tools range from earth 

observation to official statistics. The discussion on advantages, disadvantages, limitations, and 

requirements of the use of alternative data sources integrated with probability sample surveys 

is informing the debate in national and international statistical systems all over the world. Of 

course, the temptation of replacing the traditional data collection approach with “smarter” ones 

is strong. In this paper we address the evaluation of the reliability of statistics produced through 

the elaboration of big data, focusing on their structure. We analyse the relationship between 

data science, new data sources, machine learning, citizen science and smart statistics, focusing 

on satellite data. We show that the elaboration of satellite data through parametric and machine 

learning classifiers does not provide accurate statistics in complex landscapes and machine 

learning classifiers do not systematically outperform parametric classifiers. Moreover, data 

collected on a probability sample play a crucial role and should not be replaced by data 

collected by citizen without clear and strict guidelines, in case statistics have to be produced. 
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1. Introduction 

Large datasets, new data sources, administrative registers, satellites and aircrafts, webcams, 

data voluntarily provided by the internet users, data harvested from the web and so on are 

becoming easier to access and elaborate. According to Pratesi (2023): “In our digital era, data 

are everywhere: new sources, such as mobile phones, social media interactions, electronic 

commercial transactions, sensor networks, smart meters, GPS tracking devices, or satellite 

images, produce new information at an incredible speed. Digital technologies offer new 

opportunities for data collection, processing, storage.” 

These kinds of data are cheaper respect to the traditional statistical approach that implies 

delineating the aim of the survey, developing the questionnaire to be used, recruiting trained 

personnel that ask questions or make measurements (according to the kind of phenomenon to 

be surveyed) on a probability sample of statistical units. 

Of course, the temptation of replacing the traditional data collection approach with “smarter” 

ones is strong. In this paper we address some crucial questions: “How reliable statistics 

produced through data science applied to big data are?”, “How can this reliability be 

measured?”, “Which is the impact of the structure of the data?”, “Which is the relationship 

between data science, big data, new data sources, machine learning, and smart statistics?”, “Do 

machine learning classifiers outperform parametric models?”, “Can machine learning applied 

to big data integrated with data collected by citizens replace probability sample surveys?“ 

In paragraph 2 the dataset used for addressing these questions is described. It includes 

probability sample data collected on the ground by the Italian Ministry of Agriculture 
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(MiPAAF) in the north of the Tuscany Region, Italy and Sentinel satellites data from the 

Copernicus project of the European Space Agency. 

In paragraph 3 the performance of one parametric and three machine learning classifiers is 

evaluated on a real dataset in a complex landscape, adopting supervised classification of 

Sentinel satellites data, using the ground data as training and test sets. Paragraph 4 faces the 

impact on the accuracy of the classification and on statistical estimates of the use of data 

collected on points close to cities and coastal areas, which simulate a probable spatial 

distribution on the ground of data collected and spontaneously provided by citizens. Finally, 

some conclusions are drawn.  

 

2. Data structure and statistics 

Nowadays, a variety of different kinds of big data can be exploited for producing statistics, 

ranging from administrative data to completely unstructured data. Administrative data are 

generally structured data; for example, the ones collected by municipalities are based on the 

same statistical unit of the population censuses. Although collected for administrative and not 

statistical purposes and affected by under and over coverage, administrative data can be used 

for producing statistics, provided that traditional probability sample data are collected for 

estimating the level of under and over coverage and for collecting information non included in 

the administrative registers. 

Other kinds of non-conventional big data used for describing social or physical phenomena are 

unstructured data and do not allow identifying statistical units to be integrated with probability 

sample data. Relying on the elaboration of these data through data science methods regardless 

of the mentioned issues can generate strong biases hard to measure and remove. An important 

example is offered by satellite data, which are gaining increasing importance to analyse 

agricultural and agri-environmental phenomena and monitor SDGs (Olofsson et al. 2011). 

Satellite data are based on raster shaped elementary units called pixels which are not consistent 

with the parcels of the territory and can be smaller or larger then the parcels, according to the 

kind of satellite data and the complexity of the territory under consideration. Moreover, the big 

amount of information collected by satellite data is just a proxy of the needed one for 

agricultural and agri-environmental monitoring and the classification of these data requires 

ground data for training the classifier and for testing the classification (Carfagna and Di Fonzo, 

2021). 

Besides the level of structure of the data, another important aspect is the use of big data; 

namely, if the big data are analysed for producing official statistics, particular attention has to 

be devoted to the characteristics of the data, their quality, and the level of bias they can generate 

(Tillé et al. (2022)). 

In this paper, we use a set of multitemporal satellite data covering an area in the north of the 

Tuscany Region, Italy, for assessing the contribution they can give to land cover estimation: 6 

images from Sentinel 1 and Sentinel 2, 6 vegetation indexes for each of the Sentinel 2 images 

(Normalized Difference Vegetation Index (NDVI), Green Normalized Vegetation Index 

(GNDVI), Two-band Enhanced Vegetation Index (EVI2), Normalized Difference Water Index 

(NDWI), Chlorophyll Red-Edge (ClRed-edge), Soil-Adjusted Vegetation Index (SAVI)), and 

a Digital elevation model derived from satellite data. 

For the same area, the Italian Ministry of Agriculture kindly provided real data collected on the 

ground on points selected by a probability sampling survey. 574 geo-referenced points in the 

north of the Tuscany Region, Italy, on which the land use was assessed on the ground by the 

Italian Ministry of Agricultural Food and Forestry Policies in 2016, in the framework of the 

AGRIT project, aimed at producing estimates of acreage and yield for the main Italian crops 

and estimating some agri-environmental parameters. For these points, the Ministry collected in 

situ information about land use: agricultural land use and cropping patterns, and farm 



management: soil cover, tillage practices, ground cover technique, irrigation, presence of 

fences. 

The AGRIT project collected ground information on un-clustered sampling points adopting a 

two-phase probability area sampling strategy: a regular grid with 500 meters side was overlaid 

on the territory in the first phase. The points at the cross of the grid were the first phase sample 

(aligned systematic sample in two dimensions) and were photo-interpreted on orthorectified 

aerial photos. Based on the photointerpretation, the points were attributed to the following land 

use strata: arable land, permanent crops, forage, scattered trees, forest and other. An additional 

stratification criterion was considered: low, medium, and high slope; thus, the intersection of 

the two stratification criteria generated the adopted stratification.  

The second phase sample (AGRIT sample) was a subset of the first phase one, randomly 

selected according to the sampling rates described in table 1.  

 

Table 1 Sampling rate of the second phase sample points in the different strata 

 Arable 

land 

Permanent 

crops 

Forage Scattered 

trees 

Forest Other 

Low slope (0-7.5 %) 8.25 % 8.25 % 5.00 % 8.25 % 0.00 % 0.00 % 

Medium slope (7.5-

15 %) 

8.25 % 14.00 % 5.00 % 8.25 % 0.00 % 0.00 % 

High slope (higher 

than 15 %) 

4.50 % 14.00 % 3.00 % 4.50 % 0.00 % 0.00 % 

 

 

Figure 1 shows the uneven spatial distribution of the 574 second phase sample points on which 

information about land use and farm management is collected. The uneven spatial distribution 

of the points is due to the differentiated sampling rate in the various strata described in table 1. 

 



3 Performance of classifiers on a real dataset in a complex landscape 

An overview of the strengths and weaknesses of algorithms used for classifying satellite images 

is provided by Gómez et al. (2016) and Defourny (2017).  

Linear classification methods are used for classifying remote sensing data. Since the predictor 

G(x) takes values in a discrete set G, the parametric classification problem can be solved by 

dividing the input space into a collection of regions labelled according to the classification 

(Friedman et al. 2001). 

We applied the penalized logistic classifier from the class of classical parametric models and 

three supervised machine learning classifiers (Hamza et al. 2005). The penalized logistic model 

is estimated using the maximization of the likelihood function combined with a lasso penalty 

term to deal with a large number of explicative variables. This model retains a subset of the 

predictors and discards the rest.  

The machine learning techniques we considered are bagging, random forest and boosting.  

Each classifier has been repeated for different training and test sets, maintaining the same 

proportions (1000 simulations): 80% of the sample used for training the classifiers (459 points) 

and 20% of the sample used for testing (115 points). 

Figure 2 shows the distribution of the overall accuracy levels corresponding to the different 

sample selections for random forest, boosting, bagging and penalized logistic multinomial 

regression. The overall accuracy is computed taking into consideration few classes, among 

which a group of crops due to the limited presence of some minor crops: vineyards; olive 

groves; sunflower; winter cereals, other crops. 

The first set of box plots on the lefthand side of the figure shows the accuracies obtained with 

all explicative variables, that is including the variables concerning land use and farm 

management. Clearly, this kind of information is available only on the sample points; thus, the 

distribution of the accuracy achievable in an operational project in a complex landscape like 

the one we have taken into consideration is probably similar to those shown in the righthand 

side of the figure. 

Figure 2. Distribution of accuracy of random forest, boosting, bagging and penalized logistic 

multinomial regression with all explicative variables and with only explicative variables 

derived from satellite data 



 

When ground data are included in the set of explanatory variables, boosting results to be the 

most accurate classifier and random forest is the most accurate classifier when only remote 

sensing data are taken into consideration. The penalized logistic multinomial regression has the 

second highest median accuracy both with all explanatory variables and with the explanatory 

variables derived from satellite data only. The accuracy dispersion is similar for the different 

classifiers, except for bagging which shows the highest dispersion and the lowest accuracy 

values. 

The accuracies obtained are low when only variables generated by satellite data are taken into 

consideration. These results are not in line with the ones reached in most applications of 

machine learning on remote sensing data according to a review made in 2019 (Lei et al., 2019). 

These authors made a review concerning applications of machine/deep learning to various 

kinds of remote sensing data and most land use/cover applications concerned publicly available 

benchmark image datasets with extremely high resolution (pixel size much smaller than 10 

meters) and did not focus on practical applications in complex landscapes, in which the 

classification of satellite data has to be considered as a proxy of the crops acreage to be 

combined with ground data at the estimator level and not as a reliable estimate of the crop 

acreage. 

 

Table 2 Median accuracy and Kappa value for the various classifiers with all explicative 

variables and with only explicative variables derived from satellite data. The classifiers are 

ordered according to their accuracy 

All explanatory variables   Satellite explanatory variables only 

Median accuracy of 

classifiers Accuracy Kappa 

Median accuracy of 

classifiers Accuracy Kappa 

Boosting 0.845 0.777 Random forest 0.691 0.526 

Penalized logistic 

multinomial regression 0.836 0.767 

Penalized logistic 

multinomial regression 0.689 0.521 

Random forest 0.819 0.731 Boosting 0.677 0.528 

Bagging 0.812 0.713 Bagging 0.652 0.495 

 

4 Probability sample surveys replaced by citizen science 

Given the pressure to reduce as much as possible ground data collection and to use data 

spontaneously provided by citizens instead of planning ground data collections conducted by 

experts, out of the 574 points, we have selected a non-random subset of 177 points close to 

cities and coastal areas, to simulate a probable spatial distribution on the ground of data 

collected and spontaneously provided by citizens. 



 
Figure 3 Spatial distribution of all sample points and of the nonrandomly selected subset of the 

ground data (177 out of the 574 points on darker areas) close to cities and coastal areas selected 

to simulate a probable spatial distribution on the ground of data collected and spontaneously 

provided by citizens 

 

Out of the 177 points, 142 points were used for training the classifiers and 35 for testing their 

accuracy. We also selected a stratified random subsample of 177 points out of the 574 to 

compare the accuracy of the classifiers when the probability and non-probability subsets are 

used. Given the smaller number of points taken into consideration, the dispersion of the 

accuracy with different splits of the dataset into training and test sets is obviously larger, as 

shown in figure 4.  

 
Figure 4. Distribution of the accuracy of random forest, boosting, and penalized logistic 

multinomial regression with different splits of the dataset into training and test sets, with the 

subset of 177 points selected according to stratified random sampling and the subset of 177 

points close to cities and along the coast 

 



The overall median accuracies and Kappa indexes of the classifiers with the probabilistic 

subsample and with the citizen sample are very similar. According to these results, a purposive 

sample of data collected by citizens without specific skills seems to work as well as a stratified 

random sample for training and testing the classifier. 

 

Table 3 Comparison of median accuracies and Kappa values for the various classifiers, using 

the subset of points close to cities and along the coast and the subset of points selected 

according to stratified random sampling 

Stratified random 

subsample   Citizen subsample 

Median accuracy of 

classifiers Accuracy Kappa 

Median accuracy of 

classifiers Accuracy Kappa 

Boosting 0.77 0.66 Boosting 0.77 0.63 

Penalized logistic 

multinomial regression 0.76 0.64 

Penalized logistic 

multinomial regression 0.79 0.65 

Random forest 0.72 0.59 Random forest 0.74 0.55 

 

Ground data are not used only for training and testing the classifiers; in fact, in most cases, the 

acreage of the different land uses must be estimated. Since pixel counting is well known to be 

a biased estimator, the estimate of the acreage is obtained by combining the estimate based on 

ground data and classified data treated as an auxiliary variable in a calibration or regression 

estimator (Carfagna and Gallego, 2005). Thus, we have compared the estimate of the acreage 

of the various crops based on the non-probability sample and the estimates obtained with the 

whole AGRIT sample, that is the 574 points selected according to stratified random sampling 

showed in Figure 1.  

The expansion factor for the stratified random sample is based on the photo-interpreted 

systematic sample (29,658 points) (the first phase sample of the AGRIT project) and the same 

expansion factor has been adopted for the estimates based on the citizen subsample. 

The comparison of the estimates in table 4 highlights a considerable underestimate of the 

acreage of sunflowers and overestimates of the acreage of winter cereals, olive groves and 

vineyards. Consider that in real applications, no information is available for expanding the data 

to the entire population, since no phase one sample of the AGRIT project is available if data 

are collected by citizens without specific skills and no probability sample selection scheme, 

thus the underestimates and the overestimates could be even higher. 

 

 

 



Table 4 Difference in square kilometres and per cent between the acreage estimate of the 

various land uses based on the non-probability sample and on the probability sample (AGRIT 

sample) 

 

 

Area estimate with 

citizen subsample (ha) 

Area estimate with 

AGRIT sample (ha) 

Area estimate 

citizen-AGRIT 

Relative 

difference 

Other 148,654 152,364 -3,709 -2.43 

Olive groves 52,896 47,043 5,853 12.44 

Vineyard 50,577 37,368 13,209 35.35 

Winter 

cereals 47,488 42,877 4,611 10.75 

Sunflowers 5,285 9,070 -3,785 -41.73 

 

5 Concluding remarks 

In this paper we have taken into consideration big data (Sentinel satellite data) with a structure 

different from the one of statistical units (pixels instead of parcels) and we have shown that the 

elaboration of this kind of data through data science methods like parametric and machine 

learning classifiers does not provide accurate statistics in complex landscapes. We have also 

noticed that machine learning classifiers do not systematically outperform parametric 

classifiers. In fact, boosting is the most accurate classifier with the entire data set and all 

explanatory variables, random forest is the most accurate classifier with satellite explanatory 

variables only, and the penalized logistic multinomial regression has the second highest median 

accuracy both with all explanatory variables and with the explanatory variables derived from 

satellite data only. 

We have analysed the impact of non-random selection of a subset of points, mainly points close 

to cities and coastal areas, to simulate a probable spatial distribution on the ground of data 

collected by citizens. If the acreage of the main land uses is estimated based on this 

nonprobability subsample, the results are considerably different from the ones obtained with 

the whole probability sample; thus, ground data collected on a probability sample play a crucial 

role and should not be replaced by data collected by citizen without clear and strict guidelines, 

in case statistics have to be produced. 
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