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Abstract—We introduce a distributional method for learning
the optimal policy in risk averse Markov decision process with
finite state action spaces, latent costs, and stationary dynamics.
We assume sequential observations of states, actions, and costs
and assess the performance of a policy using dynamic risk
measures constructed from nested Kusuoka-type conditional risk
mappings. For such performance criteria, randomized policies
may outperform deterministic policies, therefore, the candidate
policies lie in the d-dimensional simplex where d is the cardinality
of the action space. Existing risk averse reinforcement learning
methods seldom concern randomized policies, naive extensions
to current setting suffer from the curse of dimensionality. By
exploiting certain structures embedded in the corresponding
dynamic programming principle, we propose a distributional
learning method for seeking the optimal policy. The conditional
distribution of the value function is casted into a specific type of
function, which is chosen with in mind the ease of risk averse
optimization. We use a deep neural network to approximate said
function, illustrate that the proposed method avoids the curse of
dimensionality in the exploration phase, and explore the method’s
performance with a wide range of model parameters that are
picked randomly.

Index Terms—risk averse, Markov decision process, reinforce-
ment learning, deep learning

I. INTRODUCTION

Markov Decision Processes (MDPs) are a type of discrete-
time stochastic control problem used for sequential decision-
making in situations where costs are partially random and
partially under the control of a decision maker. In risk-
averse MDPs, the decision maker is concerned with the risk
or variability of the outcomes beyond the expected costs.
One way to incorporate risk aversion into MDPs is to use
nested compositions of risk transition mappings. This approach
ensures the time-consistency property and ultimately enables
the use of a dynamic programming principle (DPP) to solve the
corresponding sequential optimization problem. The approach
is proposed in [21], where deterministic costs are considered.
Both finite and infinite (required bounded costs) time horizon
DPP are derived. Subsequent studies such as [23] and [8]
explore infinite time horizon risk-averse DPPs with unbounded
costs in different settings. [2] considers unbounded latent costs
and established the corresponding finite and infinite horizon
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DPPs. More recently, [7] has developed a framework based
on Kusuoka-type conditional risk mappings that also takes
into account randomized actions in a risk averse manner.
Depending on the type of conditional risk mappings used,
randomized actions may be more preferable than deterministic
actions, as illustrated in a motivating example in [7]. Other
methods of incorporating risk aversion into MDPs are also
available, including those discussed in [3], [8], [5], and the
references therein.

The focus of this paper is on the approach of nested
compositions of risk transition mappings. The main objective
is to develop a reinforcement learning method that solves the
infinite horizon risk-averse MDP problem presented in [7].
Specifically, the aim is to solve this problem with finite state
and action spaces, deterministic latent costs, and stationary
dynamics, without assuming knowledge of the controlled tran-
sition matrix or cost function. We begin by briefly reviewing
some sample-based algorithms that solve risk-averse MDP
problems.

For instance, [26] derives a policy gradient formula by com-
bining the static gradient formula for coherent risk measure
with the corresponding DPP. This approach is further devel-
oped in a sample-based method in [25], with its convergence
analyzed in [12]. [29] proposes a family of sample-based
algorithms to approximately solve problems with continuous
state and action spaces. [24] presents and analyzes a risk-
averse Q-learning algorithm, while [13] extends the previous
Q-learning algorithm based on estimating a general minimax
function with stochastic approximation, with detailed error
analysis conducted in [14]. [17] studies a risk-averse temporal
difference method that evaluates the value function using
linear function approximations. Finally, the recent work in
[9] develops an approach to address risk transition mappings
induced by convex risk measures.

However, the methods mentioned above do not directly
apply to the problem presented in [7], where the risk aversion
also involves the randomness in the randomized actions. This
is mainly because of the lack of linearity: the value function
of a randomized action may not be a linear combination
of the value functions of individual actions with respect to
the randomizing action kernel. Naively extending the existing
methods may result in a situation where we need to learn the
value functions for numerous pairs of states and action kernels.
Since the admissible action kernels form a d-dimensional
simplex, where d is the size of the action space, the exploration
task that follows may suffer from the curse of dimensionality



and demand a significant amount of data. On the other hand,
the finite nature of the underlying state and action spaces
suggests that we can avoid such an excessively expensive
exploration task.

We propose a distributional method to address the chal-
lenges posed by the risk aversion towards randomized actions
in the problem presented in [7]. The proposed method learns
an auxiliary function that contains sufficient information about
the value function’s distribution, avoiding the curse of dimen-
sionality and facilitating the computation of the value function
defined via a risk transition mapping. We show in Theorem
III.2 that the proposed method’s exploration effort grows
polynomially with the state and action space cardinalities.
Although we initially considered deterministic latent costs,
our method naturally handles random costs whose distribution
depends on the current state, the realized action, and the
next state. This type of random cost is seldom considered in
existing literature on risk-averse reinforcement learning. We
provide numerical examples that demonstrate the efficacy of
the proposed method at the end of this report.

Using distributional methods to solve MDP problems that
are not risk neutral has a long history (cf. [15], [27], [19],
and the reference therein). More recently, a series of works
including [4], [10], [28], [20], and [30] have demonstrated
that distributional methods can also achieve better results in
the risk neutral setting. In this broader context, our method
also contributes to the understanding of the capabilities of
distributional methods in solving MDP problems.

II. PRELIMINARIES

In this section, we present the set up the this paper.

A. Markov decision process

Let (Ω,F ,P) be a probability space. We consider a time-
homogeneous Markov decision process (MDP) with a finite
state space X and finite action space A. For each k ∈ A,
let T k ∈ R|X|×|X| be a controlled transition matrix, where
T k
ij is the probability of transitioning to state j ∈ X at the

next epoch, given the current state i ∈ X and action k ∈ A.
Let π : X → P(A) be a stationary Markovian policy, where
P(A) is the set of probability measures on A. Since A is
finite, P(A) is a |A|-dimensional simplex, and for λ ∈ P(A),
λk is the probability of action k occurring. The state-action
process subject to policy π is denoted by {(Xπ

t , A
π
t )}t≥0. The

MDP is associated with a bounded latent cost function C :
X×A×X → [0, cmax], where cmax > 0 is the upper bound of
the cost. Finally, we let γ ∈ (0, 1) be the discount factor.

B. Risk averse dynamic programming

In this paper, we use the notation L∞(Ω,F ,P) to denote
the space of bounded real-valued Borel-measurable random
variables. Equality and inequality between random variables
are understood in a P-almost sure sense. Let G ⊆ F be a
σ-algebra. We say ζ : L∞(Ω,F ,P) → L∞(Ω,G ,P) is a
conditional risk mapping if ζ satisfies the following conditions

for any Z,Z1, Z2 ∈ L∞(Ω,F ,P), Y ∈ L∞(Ω,G ,P) and
β ≥ 0,
(i) [Monotonicity] if Z1 ≤ Z2, then ζ(Z1) ≤ ζ(Z2);

(ii) [Translation equivariance] ζ(Y + Z) = Y + ζ(Z);
(iii) [Convexity] if β ∈ [0, 1], then ζ(βZ1 + (1 − β)Z2) ≤

βζ(Z1) + (1− β)ζ(Z2);
(iv) [Positive homogeneity] ζ(βZ) = βζ(Z).

Some may replace β in condition (iii) (resp. (iv)) with Y ∈
[0, 1] (resp. Y ≥ 0), which, for the most part, does not affects
the developing of the theory.

Consider U0 = {∅,Ω} ⊆ U1 ⊆ · · · ⊆ F , Z = (Zt)t∈N ⊂
L∞(Ω,F ,P) and ρt : L∞(Ω,F ,P) → L∞(Ω,Ut,P). Sup-
pose |Zt| ≤ cmax for all t ∈ N. [21] proposes to use a dynamic
risk measure of the form

ρt,T (Z) :=

{
ρt (Zt + γρt+1,T (Z)) , t < T,

ρT (ZT ), t = T,

ρ0,∞ (Z) := lim
T→∞

ρ0,T (Z) , (II.1)

for MDP optimization problem. It can be shown that the
construction above guarantees time consistency of (ρt,∞)t∈N.1

In what follows, we let U π
0 be the trivial σ-algebra, U π

t

be the σ-algebra generated by (Xπ
1 , A

π
1 , . . . , X

π
t−1, A

π
t−1, X

π
t ),

and M be a set of discrete probability measures with support
contained by (0, 1]. We consider a specific type of conditional
risk mapping

ρπt (Z) := sup
µ∈M

{∫ 1

0

inf
q∈R

{
q+

ξ−1

∫
R
(z − q)+ P

Z|U π
t (dz)

}
µ(dξ)

}
, (II.2)

where the right hand side is inspired by Kusuoka represen-
tation of law-invariant coherent risk measure (cf. [18], [22,
Section 6]). We note that

inf
q∈R

{
q + ξ−1

∫
R
(z − q)+ P

Z|U π
t (dz)

}
is the conditional version of AV@Rξ under the conditional
distribution of Z given U π

t . The main goal of this paper is
to develop a sample-based algorithm that solves the following
infinite horizon risk averse MDP optimization problem

inf
π
ρπ0,∞

((
C(Xπ

t , A
π
t , X

π
t+1)

)
t∈N

)
, (II.3)

where ρπ0,∞ is defined analogously to (II.1).
The problem (II.3) can be solved using a dynamic program-

ming principle. Specifically, we let S be the Bellman operator
acting on v : X → R defined as

Sv(i) := inf
λ∈P(A)

sup
µ∈M

{∫ 1

0

inf
q∈R

{
q+

ξ−1
∑
k∈A

λk
∑
j∈X

T k
ij

(
C(i, k, j) + γv(j)− q

)
+

}
µ(dξ)

}
.

(II.4)

1We do not adopt verbatim the setting from [21] for the sake of smooth
transition.



We can restrict v to take values in [0, cmax
1−γ ] due to the

boundedness of the cost. This allows us to replace q ∈ R
in (II.4) with q ∈ [0, cmax

1−γ ]. It can be shown that S is a γ-
contraction, and the fixed point of S, denoted by v∗, is the
optimal value function. If π∗ : X → P(A) attains the infimum
in Sv∗(i) for all i ∈ X, then π∗ is the optimal stationary policy,
and in fact, it is also optimal among all history-dependent
policies. We refer to [7] for more discussion in a general
setting.

III. DISTRIBUTIONAL METHOD FOR RISK-AVERSE
LEARNING

In this section, we introduce a novel concept called g-
values. We then propose a learning method based on g-values
and establish a convergence result under suitable conditions,
as stated in Theorem III.2. Finally, we provide a detailed
description of the algorithm for implementing the method.

A. g-value

In view of (II.4), we define the Q-value as

Q(i, λ) := sup
µ∈M

∫
[0,1]

inf
q∈R

{
q + ξ−1

∑
k∈A

λk

∑
j∈X

T k
ij

(
C(i, k, j) + γv∗(j)− q

)
+

}
µ(dξ), (III.1)

and derive the following equation for Q-learning

Q(i, λ) = sup
µ∈M

∫
[0,1]

inf
q∈R

{
q + ξ−1

∑
k∈A

λk

∑
j∈X

T k
ij

(
C(i, k, j) + γ inf

λ∈P(A)
Q(j, λ)− q

)
+

}
µ(dξ).

(III.2)

However, learning the Q function on a fine grid of X×P(A)
turns out to be excessively expensive. Therefore, instead of
continuing with (III.2), we propose to learn the following g-
value23

g(i, λ, q) :=
∑
k∈A

λk
∑
j∈X

T k
ij

(
C(i, k, j) + γv∗(j)− q

)
+
.

(III.3)

Such g-value has an advantage of being linear in λ, which
helps mitigates the cost of exploration. Moreover, it is worth
noting that q 7→ g(i, λ, q) is non-increasing and 1-Lipschitz
for any (i, λ) ∈ X × P(A), which will be useful in future
analysis. Furthermore, we argue that g-value is aligned with

2By using g to express trapezoidal shaped functions and invoking dominated
convergence (cf. [6, Theorem 2.8.1]) and monotone class theorem (cf. [6,
Theorem 1.9.3 (ii)]), it can be shown that the function q 7→ E((Z − q)+),
q ∈ R, characterizes the distribution of Z.

3One may derive an equation for g-value in analogous to (III.2), but such
equation needs not leads to a contraction in general.

our goal of solving (II.3), since by the aforementioned DPP
and (III.3), we have

v∗(i) = inf
λ∈P(A)

sup
µ∈M{∫

(0,1]

inf
q∈[0, cmax

1−γ ]

{
q + ξ−1g(i, λ, q)

}
µ(dξ)

}
.

This formula shows that the g-value is a crucial ingredient in
our approach for solving (II.3).

B. Theoretical foundation

Suppose that we have observed the running states, actions
and costs subject to some exploration policy upto time tmax,
resulting in a set of data {(xt, at, xt+1, ct)}tmax−1

t=1 , where
ct = C(xt, at, xt+1). In order to approximate g, we employ
a parameterized model fθ : X × A × R → R, where θ ∈ Θ
is the parameter, and fθ(i, k, q) is designated to approximate
g(i, δk, q), where δk is the Dirac measure on k. In view of
(III.3), g(i, λ, q) can be approximated by

∑
k∈A λkfθ(i, k, q).

We use θ̂ to denote the estimate of the optimal parameter (if
exists). In view of the bounded cost and positive discount fac-
tor, we approximate v∗ with v̂ : X → [0, cmax

1−γ ]. Heuristically,
we want to update θ̂ and v̂ recursively in the following way

θ̂n+1 ∈ argmin
θ∈Θ

sup
(i,k,q)∈X×A×[0, cmax

1−γ ](
fθ(i, k, q)−

∑
j∈X

T̂ k
ij

(
C(i, k, j) + γv̂n(j)− q

)
+

)2

,

v̂n+1(i) = inf
λ∈P(A)

sup
µ∈M

∫
(0,1]

inf
q∈[0, cmax

1−γ ]

{
q + vξ−1

∑
k∈A

λkfθ̂n+1
(i, k, q)

}
µ(dξ),

(III.4)

where we define

T̂ k
ij :=

∑tmax−1
t=1 1(i,k,j)(xt, at, xt+1)∑tmax−1

t=1 1(i,k)(xt, at)
.

It is well-known that T̂ k
ij is the MLE of the transition prob-

ability (cf. [1]). Note that
∑

j∈X T̂
k
ij

(
ct + γv̂(xt+1) − q

)
+

is a convex and 1-Lipschitz function of q that falls within
the range [0, cmax

1−γ ]. Therefore, although the objective involves
the supremum over an uncountable set, updating θ̂ is not
infeasible. However, such an update requires knowledge of C.
To circumvent this requirement, we observe that for q fixed,

T−1∑
t=1

(
yxtat

− (ct + γv̂(xt+1)− q)+
)2

=
∑

(i,k)∈X×A

T−1∑
t=1

1(i,k)(xt, at)
∑
j∈X

1j(xt+1)

(
yik − (C(i, k, j) + γv̂(j)− q)+

)2
, (III.5)



as a function of (yik)(i,k)∈X×A, attains the infimum if

yik =
∑
j∈X

T̂ k
ij

(
C(i, k, j) + γv̂(j)− q

)
+
, (i, k) ∈ X× A.

(III.6)

We can then use the following updating scheme as an alter-
native

θ̂n+1 ∈ argmin
θ∈Θ

sup
q∈[0, cmax

1−γ ]

T−1∑
t=1

(
fθ(xt, at, q)−

(
ct + γv̂n(xt+1)− q

)
+

)2
,

v̂n+1(i) = inf
λ∈P(A)

sup
µ∈M∫

(0,1]

inf
q∈[0, cmax

1−γ ]

{
q + ξ−1

∑
k∈A

λkfθ̂n+1
(i, a, q)

}
µ(dξ).

(III.7)

In order to obtain a convergence result, we make the
following technical assumption.

Assumption III.1. Let cmax > 0, ℓ ∈ N, b, εe ∈ (0, 1),
εθ, εv > 0 be absolute constants. We assume that
(i) the range of the cost function C is contained by [0, cmax];

(ii) supµ∈M µ([0, b]) = 0;
(iii) {(Xπ

t , A
π
t )}Tt=1 is subject to an exploration policy π such

that

P
( t+ℓ∑

r=t+1

1(i,k)(X
π
r , A

π
r ) ≥ 1

∣∣∣∣Fπ
t

)
> εe,

for any (t, i, k) ∈ N × X × A, where Fπ
t :=

σ(Xπ
1 , A

π
1 , . . . , X

π
t , A

π
t );

(iv) regardless of the data and v̂ : X → [0, cmax
1−γ ], we always

find θ̂new ∈ Θ and v̂new : X → [0, cmax
1−γ ] such that, for all

(i, k, q) ∈ X× A× [0, cmax

1−γ ],∣∣∣∣fθ̂new
(i, k, q)−

∑
j∈X

T̂ k
ij

(
C(i, k, j) + γv̂(xt+1)− q

)
+

∣∣∣∣
≤ εθ, (III.8)

and

sup
i∈X

∣∣∣∣v̂new(i)− inf
λ∈P(A)

sup
µ∈M

∫ 1

0

inf
q∈[0, cmax

1−γ ]

{
q + ξ−1

∑
k∈A

λkfθ̂new
(i, k, q)

}
µ(dξ)

∣∣∣∣ ≤ εv.

(III.9)

Condition (i) and (ii) follows automatically from the setting
above; these conditions are included in the assumption for the
sake of easy navigation. Condition (iii) is a version of parallel
sampling model (PSM). PSM was originally introduced in [16]
and is commonly used in reinforcement learning literature as
an exploration policy that achieves perfect exploration (cf.
[11]). Condition (iv) regards the accuracy of the update. In
particular, (III.8) corresponds to the computation of θ̂n+1 in

(III.7). Based on the separability of the objective illustrated in
(III.5), the convexity of

(
yik − (C(i, k, j) + γv̂(j)− q)+

)2
in

yik, and the observed good behavior of q 7→
∑

j∈X T̂
k
ij

(
ct +

γv̂(xt+1)− q
)
+

, we consider (III.8) reasonable.
Below is our main result. The proof is deferred to the

appendix.

Theorem III.2. Suppose Assumption III.1. Let tmax > ℓ.
Given data {(xt, at, xt+1, ct)}tmax−1

t=1 and an arbitrary v̂0 :
X → [0, cmax

1−γ ], we compute {(θ̂n, v̂n)}n∈N according to (III.7),
approximately as in Assumption III.1 (iv). Then, for any
ε ∈ (0, 1], there is a probability of at least

1− 3|X|2|A|
(
e−

ε2e
4 ⌊ tmax−1

ℓ ⌋ + e−
ε2ε2e
8ℓ ⌊ tmax−1

ℓ ⌋
)

that

∥v̂n − v∗∥∞ ≤ γn∥v̂0 − v∗∥∞ +
b−1cmaxε

(1− γ)2
+
b−1εθ + εv

1− γ
.

for all n ∈ N.

Sometimes it is advisable to assume that εe is proportional
to (|X||A|)−1. In order to maintain the same level of ac-
curacy (in terms of the probability bound), we need to set
tmax ∝ |X|2|A|2 log(|X|2|A|). In this case, the effort required
for exploration only needs to grow polynomially as |X||A|
increases.

C. Implementation

In our algorithm, we use a deep neural network for fθ. We
let mgrid ∈ N and (q1, . . . , qmgrid) be a pre-selected grid on
[0, cmax

1−γ ]. We are given data {(xt, at, xt+1, ct)}tmax−1
t=1 , and an

a priori guess v̂ of the value function.
Instead of following strictly (III.7), we consider the updating

procedure below

θ̂n+1 ∈ argmin
θ∈Θ

mgrid∑
m=1

T−1∑
t=1

(
fθ(xt, at, qm)−

(
ct + γv̂n(xt+1)− qm

)
+

)2

+ βψ(θ), (III.10)

where ψ is a penalization for ensuring monotonicity on q 7→
fθ(i, k, q), defined as

ψ(θ) :=
∑

(i,k)∈X×A

mgrid−1∑
m=1

(
fθ(i, k, qm+1)− fθ(i, k, qm)

)
+
,

and β ≥ 0 is the regularization parameter. We use stochastic
gradient descent for argminθ∈Θ. After (III.10) is done, we
perform

v̂n+1(i) = inf
λ∈P(A)

max
µ∈M∫

(0,1]

inf
q∈[0, cmax

1−γ ]

{
q + ξ−1

∑
k∈A

λkfθ̂n+1
(i, a, q)

}
µ(dξ),

(III.11)



where we recall that M is a finite set of discrete probabilities
on [0, 1], and thus the

∫
(0,1]

is in fact a finite sum. We use
gradient descent with random initialization for infq∈[0, cmax

1−γ ],
and random search for infλ∈P(A). After (III.11) is done, we
may return to (III.10) for next round of update. In order to
obtain an approximated optimal policy π̂, we should record
the approximated minimizor of infλ∈P(A) for each i.

We summarize the implementation in Algorithm (III-C).
We point out that, Algorithm (III-C) can be integrate asyn-
chronously into a larger implementation that involves running
data.

Algorithm 1 Distributional Method for Risk-Averse RL

Input: data {(xt, at, xt+1, ct)}tmax−1
t=1 , aprior guess v̂

Output: v̂, π̂
1: repeat
2: Randomly initialize θ, or use previous θ if given
3: while find θ do
4: Stochastic gradient descent according to (III.10)
5: end while
6: while update v̂ and π̂ do
7: Random search according to (III.11)

Record the best λ ∈ P(X) for each i ∈ X
8: end while
9: until Convergence

10: Update π̂(i) according to the record
11: return v̂, π̂

IV. NUMERIC EXPERIMENTS

In this section, we present numerical experiments to validate
the performance of Algorithm III-C. We consider a state-action
space with |X| = |A| = 4, and a discount factor of γ = 0.3.
We use the following M for the conditional risk mapping
(II.2):

M =
{
0.2δ0.2 + 0.8δ1, δ0.5, 0.1δ0.05 + 0.5δ0.4 + 0.6δ0.6,

0.5δ0.3 + 0.5δ0.8
}
,

where δ denotes the Dirac measure. The transition matrices
used in the experiment are randomly generated. Although our
algorithm was introduced for deterministic latent costs, it also
handles random costs without requiring significant modifica-
tions. We test the algorithm with various random costs, such
as Beta(α, β) with α, β : X × A × X → (0,∞) depending
on the current state, the realized action, and next state. We
assume the knowledge of [0, cmax], and set (q1, . . . , qmgrid) as
a uniform partition of [0, cmax] with mgrid = 100. We set
tmax = 10000 and sample according to some randomly picked
stationary policy. We then compute v̂ and π̂ using Algorithm
III-C. To ensure accuracy when updating v̂ and π̂, we perform
a thorough random search. However, we conjecture that there
is a certain structure that we can take advantage of in learning
v̂ and π̂, and the computation cost does not grow exponentially
as |A| increases. In Figure 1, we plot the relative errors of v̂
for each i ∈ X in 10 different experiments. The benchmark in
each experiment is computed using brute force search.

Fig. 1. Relative errors of all value functions in 10 experiments
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[2] N. Bäuerle and A. Glauner, “Markov decision processes with iterated
coherent risk measures,” European Journal of Operational Research,
vol. 296, no. 3, pp. 953–966, 2022.
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APPENDIX A
PROOF OF THEOREM III.2

We fix tmax > 1 and π : X → P(A) for the remainder of this section. Firstly, we will introduce the contraction property of
S.

Lemma A.1. For any v, v′ : X → R, ∥Sv − Sv′∥∞ ≤ γ∥v − v′∥∞.

Proof. This is an immediate consequence of [7, Lemma 3.3].

The proof of Theorem III.2 is also dependent on the following two technical lemmas.

Lemma A.2. For any (i, j, k) ∈ X× A× X, ε ∈ (0, 1) and integer N < εe⌊ tmax−1
ℓ ⌋, we have

P
(∣∣∣∣∑tmax−1

t=1 1(i,k,j)(xt, at, xt+1)∑tmax−1
t=1 1(i,k)(xt, at)

− T k
ij

∣∣∣∣ > ε

)
≤ exp

(
−

(N − εe⌊ tmax−1
ℓ ⌋)2

⌊ tmax−1
ℓ ⌋

)
+ 2 exp

(
− ε2N2

2tmax

)
.

Proof. To start with note that{∣∣∣∣∑tmax−1
t=1 1(i,k,j)(Xt, Xt, Xt+1)∑tmax−1

t=1 1(i,k)(Xt, Xt)
− T k

ij

∣∣∣∣ ≥ ε

}

⊆
{ tmax−1∑

r=1

1(i,k)(X
π
r , A

π
r ) < N

}
∪
({ tmax−1∑

r=1

1(i,k)(X
π
r , A

π
r ) ≥ N

}
∩
{∣∣∣∣∑tmax−1

t=1 1(i,k,j)(Xt, Xt, Xt+1)∑tmax−1
t=1 1(i,k)(Xt, Xt)

− T k
ij

∣∣∣∣ ≥ ε

})

⊆
{ tmax−1∑

r=1

1(i,k)(X
π
r , A

π
r ) < N

}
∪
{∣∣∣∣ tmax−1∑

t=1

1(i,k,j)(Xt, Xt, Xt+1)− T k
ij

tmax−1∑
t=1

1(i,k)(Xt, Xt)

∣∣∣∣ ≥ εN

}
.

Therefore,

P
(∣∣∣∣∑tmax−1

t=1 1(i,k,j)(xt, at, xt+1)∑tmax−1
t=1 1(i,k)(xt, at)

− T k
ij

∣∣∣∣ > ε

)

≤ P
( tmax−1∑

r=1

1(i,k)(X
π
r , A

π
r ) < N

)
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(∣∣∣∣ tmax−1∑
t=1

1(i,k,j)(Xt, Xt, Xt+1)− T k
ij

tmax−1∑
t=1

1(i,k)(Xt, Xt)

∣∣∣∣ ≥ εN

)
. (A.1)

In order to investigate the first term in right hand side of (A.1), we introduce an auxiliary process. For ι = 1, . . . , ⌊ tmax−1
ℓ ⌋,

we let

Lι :=

ℓι∑
t=1

1(i,k)(Xt, At)− εeι.

Note that (Lι)
⌊ tmax−1

ℓ ⌋
ι=1 is a sub-martingale under the filtration (Fπ

ℓι)
⌊ tmax−1

ℓ ⌋
r=1 . Indeed, by the Markov property of

{(Xπ
t , A

π
t )}t∈N, we have

E
(
Lι+1
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ℓι

)
= Lι + E

( ℓ(ι+1)∑
t=ℓι+1

1(i,k)(Xt, At)− εe

∣∣∣∣Fπ
ℓι

)
≥ Lι,

where we have used Assumption III.1 (iii) in the last equality. Then, by Azuma’s inequality, for N < εe⌊ tmax−1
ℓ ⌋,

P
( tmax−1∑

r=1

1(i,k)(X
π
r , A

π
r ) < N

)
≤ P

(
L⌊ tmax−1

ℓ ⌋ ≤ N − εe
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ℓ

⌋)
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(
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ℓ ⌋

)
. (A.2)

Regarding the second term in (A.1), we define M ikj
1 := 0 and

M ikj
t :=

t−1∑
r=1

1(i,k,j)(X
π
r , A

π
r , X

π
r+1)− T k

ij
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r=1

1(i,k)(X
π
r , A

π
r ), t ≥ 2.



Note that (M ikj
t )t∈N is a (Fπ

t )t∈N-martingale:
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where we have used the Markov property of {(Xπ
t , A

π
t )}t∈N in the second line. It follows from Azuma’s inequality that
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(∣∣M ijk
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≤ exp
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− ε2N2
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)
. (A.3)

Finally, by combining (A.1), (A.2) and (A.3), we complete the proof.

Lemma A.3. Let v∗ be the fixed point of S defined in (II.4). Let v̂ and v̂new be introduced as in Assumption III.1 (iv). Then,

∥v̂new − v∗∥∞ ≤ γ∥v̂ − v∗∥∞ + b−1
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Proof. To start with, by (III.9) and the fact that v∗ = Sv∗,
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Then, by Assumption III.1 (ii), (III.8) and Lemma A.1,
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The proof is complete.

We are now in position to prove Theorem III.2.

Proof of Theorem III.2. We first simplify Lemma A.2 by letting N = ⌈ 1
2εe⌊

tmax−1
ℓ ⌋⌉
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where we have used the fact that ⌊ tmax−1
ℓ ⌋ ≥ tmax

ℓ − 1 ≥ 0 in the second line. Consequently,
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Finally, under the realization that
∣∣∣∣∑tmax−1

t=1 1(i,k,j)(xt,at,xt+1)∑tmax−1
t=1 1(i,k)(xt,at)

−T k
ij

∣∣∣∣ ≤ ε for all (i, k, j) ∈ X×A×X, invoking (A.3) iteratively,

we yield

∥v̂n − v∗∥∞ ≤ γn∥v̂0 − v∗∥+ b−1

1− γ

(
cmax

1− γ
ε+ εθ

)
+

εv
1− γ

,

which completes the proof.
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