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1 Introduction

Kernel based Support Vector Machines (SVMs) were originally designed to handle two-class
supervised classification problems, and quickly established themselves as one of the most
accurate machine learning algorithms for class prediction. However, this success did not
translate to the related task of deriving reliable probability estimates of class membership.
In fact, Lin (2002) has shown that, by targeting directly classification boundaries, standard
SVMs do not carry much information about class probabilities other than the predicted class
by itself. Nevertheless, Lin, Lee and Wahba (Lin et al., 2002) showed that, by appropriately
modifying (weighting) the loss function used in standard SVMs, nonstandard SVMs can
estimate consistently a theoretical Bayes rule for any arbitrary setting of class probabilities.
Based on this property, Wang, Shen and Liu (Wang et al., 2008) proposed to solve sequences
of nonstandard SVMs with varying weight specifications, and to recover class probabilities
from the frontiers between regions of the weights domain that lead to different predictions.

The first proposal to extend this idea to the general k-class problems, is an all-in-one
approach due to Wu, Zhang and Liu (Wu et al., 2010) (WZL). However, in this proposal
the number of base weighted SVMs increases exponentially with the number of classes,
and their training requires the optimisation of non-convex problems, making the method
impractical for big, or even moderate, data problems. Multiclass probability estimation
based on pairwise one-against-the-rest weighted SVMs were proposed in Xu and Wang
(2013) and Wang et al. (2019).

This work addresses the computational difficulties associated with the WZL all-in-one
approach, and compares its statistical performance against competing alternatives. In
particular, on the one hand, we will propose an improved method for recovering class prob-
ability estimates from weighted SVM predictions. In our approach, these estimates will be
based on the solutions of linear programming models that optimize an l1-norm measure of
the agreement between the predictions implied by probability estimates, and those made
by weighted SVMs. One important advantage of this strategy is that, unlike in the original
WZL method, the different weight specifications do not have to be uniformly distributed
over a k-dimensional simplex, which allows for the creation of grids with satisfactory res-
olution, while ensuring that the number of required weighted SVMs only grows linearly
with the number of different classes. On the other hand, we propose to employ an univer-
sal kernel without bias terms, using the weighted loss proposed by Lin, Lee and Wahba
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(Lee et al., 2004) (LLW). We note that the LLW loss leads to convex optimization prob-
lems and, as noted in Dogan et al. (2016), for multiclass SVMs based on universal kernels,
dropping bias terms is of minor importance in terms of statistical properties, and allows
the use of computationally efficient decomposition algorithms for SVM training. Based on
these strategies, we were able the find reliable class probability estimates for problems with
hundreds of examples, and more than a dozen different classes.

Simulation results suggest that class probability estimation based on weighted SVMs
are usually more accurate than competing distribution free machine learning approaches,
and more reliable than model based statistical methodologies when their assumptions fail.
Amongst the SVM based methods, no alternative is universally superior to the others, and
the best method seems to depend on the particular data conditions at hand.

The remainder of this paper is organized as follows. Section 2 introduces notation, and
reviews weighted multiclass SVM formulations. Section 3 formalizes the method of estimat-
ing class estimates from sequences of weighted SVMs predictions. Section 4 describes the
SVM training algorithm proposed. Section 5 presents controlled simulation experiments
comparing our proposal with the most important alternatives, and Section 6 concludes the
paper.

2 Multiclass Probability SVMs

Let T = {(x1, y1), . . . , (xn, yn)} be a training set of n examples, where xi is an attribute
descriptor belonging to some domain, X , the label yi is an integer belonging to the set
Y = {1, . . . , k}, and all pairs (xi, yi) were independently generated from some unknown, but
common, probability distribution, P (X, Y ). Based on T , we are interested in developing
estimator functions, pc(x) ; c ∈ Y , for the posterior class probabilities:

pc(x) = P (Y = c|X = x) =
P (x, c)∑

c′∈Y P (x,yc′)
(1)

These estimators are to be recovered from a sequence of nonstandard (weighted) multi-
class SVMs yielding decisions rules with general form

ŷ = argmaxc fc(x) (2)

where fc is the cth element of the vector function f : X 7→ Rk that solves the optimization
problem:

minf∈Fk n−1
∑n

i=1 πyiL(f(xi), yi) + λ J(f) (3)

subject to
∑

c∈Y fc = 0 (4)

Here, Fk is a cartesian product of some known functional space F , the penalty operator
J : Fk 7→ R+

0 measures model complexity, λ ∈ R+ is a regularization parameter that
controls the trade-off between the smoothness of f and the multi-class large margin loss
L : Rk × Y 7→ R+

0 , and the weighting vector π belongs to the k-dimensional simplex,

Ak = π ∈ Rk :
∑k

c=1 πc = 1 , ∀c πc ≥ 0} .
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In this paper we will study SVMs based on universel kernels, where F is a strictly
positive definite Reproducing Kernel Hilbert Space (RKHS), HK, induced by some known
kernel function K : X × X 7→ R, and endowed by the norm ||.||HK

(Wahba (1998), Cris-
tianini and Shawe-Taylor (2000), Poggio et al. (2002)). Then, the representer theorem
(Kimeldorf and Wahba (1971)) implies that for all x ∈ X and c ∈ Y , fc(x) and ||fc||2HK

can
be expressed as fc(x) =

∑n
i=1 θ

c
i K(xi,x), ||fc||2HK

=
∑n

i=1

∑n
j=1 θ

c
i θ

c
j K(xi,xj), θ

c ∈ Rn,
and the penalty J(.) is typically chosen as the sum of the squared norms of the f compo-
nents, i.e., J(f) =

∑k
c=1 ||fc||2HK

.
We note that this framework differs from the traditional one assumed in most SVMs,

in that our classification functions f do not include bias terms. Poggio et al. (2002)) show
that the general approximation properties of strictly positive definite Reproducing Kernel
Hilbert Spaces do not require such terms, and Dogan et al. (2016) recommend dropping
them from standard multiclass SVMs, since this can lead to substantial computational gains
without affecting the main statistical properties of the resulting classifiers. We followed
Dogan’s recommendation and our numerical comparisons, to be described in Section 5,
suggest that the resulting weighted SVMs are not adversely affected by this choice.

Different weighted versions of known multi-class SVMs can be specified as particular
cases of decision rule (2) and optimization model (3) (4), by choosing particular loss func-
tions. In this paper, we will estimate class probabilities from the class predictions given by
the weighted LLW loss proposed in Lee et al. (2004):

LLLW (f , y) =
∑

c∈Y\{y}(fc + (k − 1)−1)+ (5)

where (u)+ := max(0, u).
Advantages of using the LLW loss include the facts that this loss is weighted Fisher

consistent (see Wu et al. (2010), and Lee et al. (2004)), and that the training of the
resulting SVMs leads to convex optimization models. In Section 4 we will describe an
efficient algorithm to train weighted LLW SVMs.

3 Recovering Class Probabilities from Class Predic-

tions

In order to estimate class probabilities from the predictions given by weighted SVMs, we
need first to train several weighted SVMs with different weight specifications. Let G be the
grid of different specifications for the weighting vector π. In Wu et al. (2010), G is defined
as an uniformly distributed set of points over Ak. A consequence of this choice is that the
number of grid points, #G, grows exponentially with k.

In this paper we propose a novel method to recover class probabilities from class pre-
dictions, where #G only increases linearly with k. Our approach is based on optimizing an
heuristic l1-norm measure of the agreement between the weighted SVMs predictions and
the optimal classification rules implied by the pc(x) estimates. In particular, consider the
weight specification πg and the corresponding weighted SVM prediction ŷg. Assuming the
theoretical cost weighted classification problem,
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minf E[πg
YL(f(X), Y )|X = x)] s.t.

∑
c∈Y fc = 0, the SVM prediction agrees with the opti-

mal Bayes rule for a vector of a-posteriori probabilities, pc(x), iff

πg
ŷg
pŷg(x) ≥ πg

c pc(x) ∀c ∈ Y\{ŷg} (6)

When it is possible to find p(x) vectors such that (6) is satisfied for all πg ∈ G, a
reasonable estimation criterion is to choose amongst such vectors, the one that maximizes
the desirable sum of the l1-norm margin deviations πg

ŷg
pŷg(x)−πg

cpc(x). On the other hand,

when it is not possible to find a vector estimate that always satisfies (6), one may search
for one the minimizes the undesirable l1-norm deviations πg

cpc(x) − πg
ŷg
pŷg(x). Putting

these two goals together, we propose to search for the probability estimate that solves

minp(x)∈Ak

∑
πg∈G

∑
c∈Y\{ŷg}

η (πg
c pc(x)− πg

ŷg
pŷg(x))+ −

− (πg
ŷg
pŷg(x)− πg

cpc(x))+ (7)

subject to pc(x) ≥ ε ∀c ∈ Y (8)

where the constraint (8) enforces that p(x) is always strictly positive, η is an hyper-
parameter that controls the trade-off between the desirable and undesirable deviations,
and ε is a small positive constant.

The optimization of l1-norm measures similar to the one used in (7)-(8) has been widely
studied in the Operations Research literature on supervised classification (see Duarte Silva
(2017)), where it has been shown that the resulting problems can be solved by straight-
forward linear programming models. In the current context, one important advantage of
this method is the fact that it does not require πg to be strictly uniformly distributed over
Ak, which allows for alternative ways of defining representative G sets with a considerable
smaller number of grid points. We use one such alternative, where we look at one compo-
nent of π, say πc, at the time, and ensure that a resulting set of πg specifications gives
an adequate representation of the (0, 1) interval, while the remaining components of π are
assigned at random. The representation of the (0, 1) line is satisfied by setting πc in turn
to each of the d−1π -1 uniformly distributed points of the (0, 1) line, with a distance of dπ
between each point. The resulting grid size equals #G = k d−1π − k, a number that only
increases linearly with k.

4 Learning Algorithms

The state of art algorithms for training SVMs are based on decomposition strategies to solve
dual formulations of the associated optimization problems. In the case of 2-class problems,
a standard reference is Platt’s Sequential Minimal Optimization (SMO) algorithm (Platt,
1999) which decomposes a large convex quadratic optimization problem into a sequence of
two-dimensional quadratic problems that can be solved analytically. This algorithm was
adapted by Dogan et al. (2011) to solve the most common k-class SVMs, including those
based on the unweighted LLW loss. It is straightforward to show that this approach also
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applies to SVMs using the weighted LLW loss. In particular, the dual of optimization
problem (3) - (4) with loss (5) can be expressed as the following as a convex quadratic
optimization problem with box constrains.

maxα∈Rn×k
1

k−1
∑

i∈T
∑

c∈Y\{yi}αic −
− 1

2λ

∑
i,i′∈T K(xi,xi′)

∑
c,c′∈Y (δcc′ − 1

k
) αic αi′c′ (9)

subject to 0 ≤ αic ≤
πyi

n
i ∈ T , c ∈ Y\{yi} (10)

αiyi = 0 i ∈ T (11)

where δcc′ = I(c = c′) is the kronecker delta.
Problem (9)-(11) can be solved efficiently by the following algorithm: (i) initialize the

α vectors at 0; (ii) choose the pair of α components, αi and αi′ , that lead to the maximal
increase in (9) subject to (10)-(11); (iii) find the analytical solution of problem (9)-(11)
restricted to αi and αi′ ; (iv) repeat (ii) and (iii) until convergence.

The details can be found in Dogan et al. (2011), while in Dogan et al. (2016) it is argued
that, under reasonable assumptions, the asymptotic time complexity of this algorithm
equals the one required to solve Crammer and Singer (2001) (CS) SVM. We note that the
popularity of the CS SVM is mostly due to the fact that this algorithm is believed to be
the fastest to train amongst all all-in-one multiclass SVMs.

5 Simulation Experiments

In this section we illustrate the performance of this proposal, comparing it with seven
alternative methods for 4 simulation scenarios.

The methods under comparison are: (i) three model based statistical methods, namely
Multinomial Logistic Regression (MLR), Multiple Linear Discriminant Analyis (MLDA)
and Multinomial Generalized Additive Models (MGAM) (Yee and Wild (1996)); (ii) three
SVM based metods, namely our Probabilistic Vector Machines (PVM) proposal, and the
WZW (Wu et al., 2010) and XW (Xu and Wang, 2013) pairwise methods. (iii) two standard
machine learning methods, namely classification trees (TREE) (Breiman et al., 1984) and
Random Forests (RF) (Breiman, 2001).

We estimated the MLR and MLDA models using, respectively, the multinom and the
lda functions of the nnet and MASS R packages (Venables and Ripley (2002)). In the
MGAM models we employed cubic splines for all continuous attributes, linear functions for
the discrete attributes, and relied on the vgam function of the VGAM package (Yee (2010)),
with all remaining arguments at their default values. In the SVM based methods we used R
code gently ceded by Xu and Wang, for XW method, and our own implementations for the
PVM and WZW methods. In these three methods we always employed the Gaussian kernel,
K(xi,xi′) = e||xi,−xi′ ||22/σ2

, with the hyperparameter σ2 chosen as the median between all
pairwise distances ||xi,−xi′||22 i, i′ ∈ T i 6= i′, in the training sample (see Caputo et al.
(2002)). The regularization parameter λ in (3), was found by a two step search that tried
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to minimize the log-likelihood, lnL =
∑

i ln p̂yi(xi), in an independently generated tuning
set with the same size as the training set. In the first step we searched for the λ0 value
that minimizes lnL over the set {25j| j = −3,−2, . . . , 3}, and in the second step we refined
the search by looking for the the minimizer of lnL over {2jλ0| j = −2,−1, 0, 1, 2}. For the
PVM method, the grid step size was always set at dπ = 0.2/

√
n, the ε constant in (8) to

ε = dπ/2, and the η hyper-parameter at η = 15 . For the Tree and Random Forest methods
we relied on the TREE and RF functions of the rpart (Therneau and Atkinson, 2018) and
randomForest (Liaw and Wiener, 2002) R packages, with all arguments set at their default
values.

We considered four different experiments with different data conditions. The first two
experiments use setups initially considered in Wu et al. (2010). Both these experiments are
3-class problems, and the first one illustrates conditions in which the assumptions of MLR
are satisfied, while in the second one the data was generated by highly non-linear functions
that lead to a gross violation of these assumptions. The third and fourth experiments
use setups initially considered in Xu and Wang (2013), in which the data was generated
by heavy-tailed distribtions that also violate MLR assumptions. These two experiments
consider, respectivelly a 5-class (3rd experiment) and a 10-class (4th experiment) problem.
The details of the data generation are described in the paragraphs below.

Experiment 1. The first experiment uses the data conditions described in Example 1 of
Wu et al. (2010), namely training samples of 400 observations with the Y class labels gen-
erated uniformly from Y = {1, 2, 3}, and 2-dimensional predictors generated conditionally
on Y, from a Gaussian distribution with mean vector µ(y) = [cos(2yπ/3), sin(2yπ/3)]T

and covariance matrix Σ = 0.72 I2, with I2 being the 2-dimensional identity matrix.
Experiment 2. The second experiment uses the data conditions described in Example

3 of Wu et al. (2010), namely training samples of 600 observations with 2-dimensional
predictors generated uniformly over the disk {x : x21 + x22 ≤ 100}, and class probabilities
generated conditionally on x from pc(x) = exp(gc(x))/

∑3
c′=1 exp(gc′(x)) , c ∈ Y = {1, 2, 3},

where g1(x) = Φ−1(T2(−5x1

√
3 + 5x2)), g2(x) = Φ−1(T2(−5x1

√
3 − 5x2)), g3(x) = 0, and

Φ(.)T2(.) denote the univariate cumulative standard normal and student t with 2 degrees
of freedom (t2) distributions.

Experiments 3 and 4. The third and fourth experiments use the data conditions de-
scribed in Examples 1 and 2 of Xu and Wang (2013), namely training samples of 400
observations with the Y class labels generated uniformly from Y = {1, 2, . . . , k}, and 2-
dimensional predictors generated conditionally on Y, from a t2 distribution with mean
vector µ(y) = [cos(2yπ/k), sin(2yπ/k)]T and covariance matrix Σ = diag(1, 2). In experi-
ment 3, k = 5 while in experiment 4, k = 10.

In all fourth experiments, we trained the eight estimation methods on 50 different,
independently generated, training samples, and evaluated them by computing the l2 norm
error, l2 err = 1

#E
∑

i∈E
∑

c∈Y(p̂c(xi)−pc(xi))2, and Empirical Generalized Kullback-Leiber

(EGKL) measure, EGKL = 1
#E

∑
i∈E

∑
c∈Y pc(xi) ln pc(xi)

p̂c(xi)
, in an independently generated

validation data set (E) with 1000 examples.
Tables 1 through 4 present the means, mean standard errors, and medians of the l2-

norm and EGKL errors for all simulation experiments. Tables 1 and 2 also show, under
the WZL acrynom, the reported average of these measures (see Wu et al. (2010)) for the
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Table 1: Error rates for Experiment 1

MLDA MLR MGAM PVM WZW XW TREE RF WZL
l2err

mean 0.29 0.36 0.53 0.57 1.62 6.26 8.23 5.18 0.90
(stderr) (0.03) (0.03) (0.04) (0.04) (0.09) (0.13) (0.15) (0.11) –
median 0.21 0.30 0.40 0.52 1.59 6.26 8.26 5.13 –

EGKL
mean 0.59 0.77 1.12 1.53 3.47 ∞ ∞ ∞ 2.56
(stderr) (0.05) (0.07) (0.09) (0.09) (0.15) – – – –
median 0.46 0.64 0.91 1.44 3.38 ∞ ∞ ∞ –

Table 2: Error rates for Experiment 2

MLDA MLR MGAM PVM WZW XW TREE RF WZL
l2err

mean 6.90 6.62 5.21 2.50 5.01 9.44 10.13 5.26 4.47
(stderr) (0.05) (0.03) (0.06) (0.09) (0.31) (0.22) (0.27) (0.08) –
median 6.81 6.58 5.19 2.38 4.71 9.03 9.75 5.35 –

EGKL
mean 12.59 12.33 10.69 5.97 8.49 ∞ ∞ ∞ 11.79
(stderr) (0.06) (0.06) (0.07) (0.11) (0.40) – – – –
median 12.51 12.18 10.59 5.81 7.70 ∞ ∞ ∞ –

original Wu, Zhang and Liu proposal. We note that, unlike in our experiments, Wu et al.
(2010) did not use an universal kernel but a linear one instead, taking advantage of the
known form of the optimal classification boundaries for these conditions. However, in real
data problem the true form of these boundaries is always unknown.

For some combinations of experiments, replications, and classes, the XL, TREE or
RF methods estimate class probabilities exactly by 0, which leads to an infinite value of
the EGKL measure. This problem does not occur for the l2-norm error measure, nor for
the remaining three methods, including the PVM which always enforce strictly positive
probability estimates. Nevertheless, we tend to prefer the EGKL loss as an global measure
of estimation performance because, among other reasons, unlike the l2 norm error, it does
not treat equal absolute errors as equally important, regardless of being associated with
probabilities close to 0.5 or to the 0 and 1 boundaries of their domain. However, we note
that, in these experiments, when results for the EGKL loss are available the resulting
rankings of the six estimation methods tends to agree with the rankings given by the l2
error. In Experiment 4 (10-classes with heavy-tailed distributions) we were not able to fit
MGAM models in many replications because of numerical difficulties that were not resolved
by the usual remedies of trying different starting conditions and data scalings. Therefore,
we not present results for the MGAM method under this condition.

Overall these results confirmed previous findings in the literature, gave new evidence
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Table 3: Error rates for Experiment 3

MLDA MLR MGAM PVM WZW XW TREE RF
l2err

mean 5.60 5.01 3.59 4.17 2.47 2.82 4.73 13.19
(stderr) (0.10) (0.10) (0.07) (0.08) (0.05) (0.04) (0.17) (0.11)
median 5.56 4.91 3.61 4.13 2.39 2.81 4.57 13.23

EGKL
mean 15.30 15.80 12.17 11.28 6.00 ∞ ∞ ∞
(stderr) (0.15) (0.20) (0.28) (0.18) (0.12) – – –
median 15.08 15.66 11.53 11.26 5.81 6.36 ∞ ∞

Table 4: Error rates for Experiment 4

MLDA MLR MGAM PVM WZW XW TREE RF
l2err

mean 3.34 3.09 – 2.63 1.81 1.81 3.93 14.89
(stderr) (0.05) (0.05) – (0.06) (0.03) (0.03) (0.13) (0.10)
median 3.34 3.07 – 2.53 1.81 1.78 3.82 14.81

EGKL
mean 17.33 18.47 – 11.83 8.64 8.03 ∞ ∞
(stderr) (0.20) (0.29) – (0.19) (0.16) (0.15) – –
median 17.36 18.14 – 11.42 8.54 7.76 ∞ ∞

on the competitivety of the SVM aproach to probability estimation, and demonstrated
the utility of our proposal. In particular, the MLR and MLDA methods gave the best
results when the assumptions of MLR were met (Experiment 1), but when they were
grossly violated one of the SVM based methods always performed the best. The MGAM
performed worse than MLR and MLDA under MLR assumptions, and better than these
two methods otherwise. However, in the conditions where MGAM beat the two classical
statistical methods, it was always inferior to at least one of the SVM based methods. On the
other hand, the performance of the Tree and Random Forest methods was disappointing,
suggesting that in spite of their merits for pure supervised classification problems, they are
not as reliable at providing estimates of class probabilities.

Among the three SVM methods we did not find a clear overall winner. In these ex-
periments, the pairwise one-against-all methods performed the best for the conditions
characterized by heavy-tailed distributions (Experiments 3 and 4), while the all-in-one
PVM gave the best results for the non-lineary transformed data (Experiment 2). Further-
more, both the PVM and MGAM methods seemed relatively stable across different data
conditions, coming often as second best, when they were not the ideal methods and, in
particular, performing better than the pairwise SVM methods, when the assumptions of
MLR are satisfied (Experiment 1), and better than MLR and MLDA when the data has
severe outliers (Experiments 3 and 4). Among the parwise one-against-all SVM methods
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the WZW performed better than the XW, confirming previous findings reported in Wang
et al. (2019).

Remarkably, in the experiments for which results for the original all-in-one Wu et al.
(2010) proposal were available, those results were improved by our PVM proposal, even
though, contrary to Wu et al. (2010), we relied on agnostic universal kernel, and used only
297 (Experiment 1) and 364 (Experiment 2) grid points, while Wu et al. used a total of 1326
grid points in each of these two experiments. We believe that this surprising result might be
explained by the fact the recovery of probabilities by optimizing (7) uses more information,
than the matching of observed with expected frequencies employed in the original all-in-
one SVM method. Finally the comparison of the results of experiments 3 and 4 suggests
that the number of different classes might not a strong influence on the relative standing
of alternative estimation methods. Naturally, additional studies are necessary to verify if
these results hold for other data conditions.

6 Conclusions

Kernel based methods are an important set of tools for any modern statistician. However,
most kernel methods focus on pure prediction problems, and do not pay enough attention
to the related, and critical, problem of providing reliable confidence measures for these
predictions. In the particular case of kernel based classification SVMs, this problem has
being tackled by taking advantage of information provided by sequences of weighted SVMs.
However, up to now, for a moderate or large number of different classes this approach was
only computationally feasible based on pairwise pairwise one-against-all strategies, and not
by a theoretically more sound all-in-one approach.

In this paper we have filled this gap, and developed a computationally efficient esti-
mation method based on sequences of weighted SVMs that consider all k classes, simul-
taneously. Furthermore, we have provided further statistical evidence that SVM based
probability estimators are among the most reliable distribution free estimators for class
probabilities. In line with similar results for the pure classification problem, we have found
that no particular method of extending 2-class to general k-class SVM methodologies dom-
inates the alternatives, and different data conditions may favor different approaches.
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