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ABSTRACT

In the context of fuzzy data analysis, we developed the methodology to construct fuzzy confidence intervals
by the so-called technique of the likelihood ratio. In particular, the distribution of the likelihood ratio is
estimated by a proper bootstrap algorithm, such that the randomly drawn observations will preserve the
location and dispersion measures of the original fuzzy data set. Such intervals are suitable tools to test
parameters. In particular, we show how to implement a hypothesis test for the equality of means of two
groups, and we provide the decision rule. Our strategy will be to construct fuzzy confidence intervals for
each parameter and then to analyse the overlapping area existing between them. We describe the method
of construction of these particular intervals briefly. We recall the relative weight of the randomness
vs fuzziness appearing in the process. Then, we explain how to use these intervals to test the equality
of means. The decision rule will help us to reject or not the null hypothesis. We intend to show the
practicability of our approach with an empirical application based on the survey of Health, Ageing and
Retirement in Europe (SHARE Data).

Keywords: Fuzzy Statistics, Fuzzy Confidence Intervals, Testing equality of means, SHARE Data,
Package R FuzzySTs

1. Introduction and motivation

The approach of considering the data as fuzzy, depending on the case, is gaining more and
more importance. In fact, at the age of AI, it is imperative to know how to treat, i.e. to deal
with, e.g. the perception of human reasoning appearing directly or not in many data. In such
situations, vagueness and imprecision are inherent to the data and, consequently, one has to
analyse them as fuzzy data. Fuzzy logic, initiated by L. Zadeh, has provided the indispensable
tools to manage these situations. Keeping going and using the concepts of these new, non binary
logic, fuzzy statistics open a broad field of new researches. Though much has been done in this
fascinating area, limitations and difficulties arise as new techniques are developed. In particu-
lar, though fuzzy distributions could be postulated, inferential tools cannot straightforward be
derived and used, and are more or less limited.

We intend in this study to tackle the problem of testing the equality of means in a frame-
work of fuzzy data. Our fuzzy inference analysis will rest on fuzzy confidence intervals. We

https://www.unifr.ch/inf/asam
https://www.unifr.ch/inf/asam
https://www.unifr.ch/inf
https://www.unifr.ch
mailto:laurent.donze@unifr.ch
mailto:redina.berkachy@unifr.ch
https://share-eric.eu
https://share-eric.eu


recently show how to construct such intervals by the so-called technique of the likelihood ratio
(Berkachy and Donzé (2022)). Thanks to a bootstrap method, we are able to derive a proper
distribution of this ratio and build the fuzzy interval. Berkachy (2021) and Berkachy and Donzé
(2020a) show how to use these intervals to test hypotheses on individual parameters, for instance
the testing of the fuzzy mean of a distribution. Berkachy and Donzé (2022) particularly show
how to implement a hypothesis test for the equality of means of two groups, and give a practical
decision rule. Our strategy will be to construct fuzzy confidence intervals for each parameter
and then to analyse the overlapping area existing between them. Thereafter, we describe the
method of construction of these particular intervals briefly. We recall the relative weight of the
randomness vs fuzziness appearing in the process. Then, we explain how to use these intervals
to test the equality of means. The decision rule will help us to reject or not the null hypothesis.

We present an empirical application based on the survey of Health, Ageing and Retirement
in Europe. This panel dataset is well-known. Many studies have already been conducted using
these data. In particular, this paper uses data from the generated easySHARE data set (Börsch-
Supan and S. Gruber (2022)). See Stefan Gruber, Hunkler, and Stuck (2014) for methodological
details. 1

2. Fuzzy confidence intervals

2.1 Notation

Let us define by x̃ a fuzzy number. We write by µx̃(·), the membership function. We
consider also the α-cuts of x̃ denoted by x̃α or by its equivalent in interval form by [x̃Lα, x̃

R
α ]. In

practice, triangular or trapezoidal fuzzy numbers are often used. We denote them by a triplet
x̃ = (p, q, r) respectively by x̃ = (p, q, r, s), with p ≤ q ≤ r ≤ s ∈ R.

2.2 Fuzzy confidence intervals

We first describe the construction of the traditional fuzzy confidence interval. Let be
X1, . . . , Xn, a random sample with its corresponding fuzzy perception X̃1, . . . , X̃n (in an epis-
temic approach). The fuzzy realisations are x̃i, i = 1, . . . , n. We note the fuzzy random sample
by X̃ . We assume that the distribution of Xi depends on a parameter θ about which we intend
to do inferences. Using the fuzzy data, we can perform the test H0 : θ = θ0 against H1 : θ ̸= θ0
by first constructing a fuzzy confidence interval for θ at a significance level δ. Kruse and Meyer
(1987) define a two-sided fuzzy confidence interval Π̃ for θ as:

Definition 2.1 (Fuzzy confidence interval (Kruse and Meyer (1987))).
Let [π1, π2] be a symmetrical confidence interval for θ at the significance level δ. A fuzzy

confidence interval Π̃ is a convex and normal fuzzy set such that its left and right α-cuts,
respectively written by Π̃α = [Π̃L

α , Π̃
R
α ], are written in the following manner:

Π̃L
α = inf

{
a ∈ R : ∃xi ∈ (X̃i)α,∀i = 1, . . . , n, such thatπ1(x1, . . . , xn) ≤ a

}
,

Π̃R
α = sup

{
a ∈ R : ∃xi ∈ (X̃i)α, ∀i = 1, . . . , n, such thatπ2(x1, . . . , xn) ≥ a

}
.

In Berkachy and Donzé (2020a, 2022), we generalise the traditional construction procedure
of fuzzy confidence intervals by applying the concept of likelihood ratio. Note that this is not
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something new. See for example Gil and Casals (1988). The complete procedure we developed
can be found in Berkachy and Donzé (2022). Let us in the following summarise the main concepts
and steps. Based on Zadeh’s probability concepts (Zadeh (1968)), the likelihood function of a
fuzzy observation can be defined as:

Definition 2.2 (Likelihood function of a fuzzy observation).
Let θ̃ be a fuzzy parameter, possibly a vector, in the parameter space Θ. For a single fuzzy

observation x̃i, the likelihood function can be given by:

(1) Lθ̃; x̃i) = P (x̃i; θ̃) =

∫
R

µx̃i(x)f(x; θ̃)dx.

This probability can also be written using the α-cuts of the involved fuzzy numbers.
Let us now write the likelihood function for the fuzzy random sample X̃ with fuzzy reali-

sations x̃ :

L(θ̃; x̃) = P (x̃ ; θ̃) =
∫
R

µx̃1f(x; θ̃)dx · · ·
∫
R

µx̃nf(x; θ̃)dx,

which in logarithms gives:

ℓ(θ̃; x̃) = ln(L(θ̃; x̃) = ln

∫
R

µx̃1f(x; θ̃)dx+ . . .+ ln

∫
R

µx̃nf(x; θ̃)dx.

The likelihood function is the following LR statistic:

LR = −2 ln
L(θ̃; x̃)

L(ˆ̃θML; x̃)
= 2

[
ℓ(
ˆ̃
θML; x̃)− ℓ(θ̃; x̃)

]
,

such that L(θ̃; x̃) ̸= 0 and L(ˆ̃θML; x̃) ̸= 0, are both finite, and where ˆ̃
θML is the maximum

likelihood estimator of the fuzzy parameter θ̃.
As we cannot simply assume an asymptotically χ2-distribution for LR, the question of its

distribution arises naturally. We solve this problem by applying a specific bootstrap procedure
(see Berkachy and Donzé (2022)).

Let be η the (1−δ)-quantile of the distribution of the LR statistic. The confidence interval
can be found as:

2
[
ℓ(
ˆ̃
θML; x̃)− ℓ(θ̃; x̃)

]
≤ η,

which gives:

ℓ(θ̃; x̃) ≥ ℓ(
ˆ̃
θML; x̃)−

η

2
.

Thus, the constructed interval is composed of all possible values θ̃, for which the log-likelihood
maximum varies by η/2 at most. A mandatory condition is that for every value of the parameter
θ, the fuzzy confidence interval by the likelihood ratio Π̃LR has to verify the following equation:

P
(
(Π̃LR)

L
α ≤ θ ≤ (Π̃LR)

R
α

)
≥ 1− δ, ∀α ∈ [0; 1].

We propose an ad hoc procedure to guarantee this condition (see Berkachy and Donzé (2022)).
The R package FuzzySTs (Berkachy and Donzé (2020b)) gives the tools to build the fuzzy con-
fidence interval Π̃LR.



2.3 Inference: comparison of means

Our aim is to compare the mean of two groups. Let us define the null hypothesis H0 that
the means related to the two groups are equal, and the alternative one H1 that the pair of means
is not equal. We wish thus to test at a significance level δ:

H0 : µ1 = µ2 against H1 : µ1 ̸= µ2,

where µ1 and µ2 are the means of the groups 1 and 2 respectively. In a traditional approach,
we would rewrite the test as a difference of parameters and effectively test this difference equal
zero against the alternative. A translation of this approach in a fuzzy context is not so easy.
First, the difference of fuzzy numbers are not so straightforward to compute and could lead to
many problems. Second, a fuzzy distribution should be assumed for this difference, which could
be difficult to justify. Thus, another way should be explored.

First of all, we construct for each group the fuzzy confidence intervals Π̃LR1 and Π̃LR2

by the above described method at the 1 − δ confidence level. We then analyse the overlapping
between the intervals. The aim is to be able, using these intervals, to identify whether the means
of groups are potentially equal or not. In case of perfect overlapping, we could infer that there
is no difference between the means. We use the metric dθ

∗
SGD proposed by Berkachy (2021) to

measure the distance between the two fuzzy sets Π̃LR1 and Π̃LR2 . See Berkachy and Donzé
(2022) for a justification and a description of this particular distance.

Berkachy (2020) shows how to find a so-called optimal distance between two fuzzy sets,
i.e. the position of the intervals such that both intervals become tangent. Let us denote this
distance by dθ

∗
SGD(Π̃LR1 , Π̃LR2)opt. We are now able to propose the following R statistic given by:

R =
dθ

∗
SGD(Π̃LR1 , Π̃LR2)

dθ
∗

SGD(Π̃LR1 , Π̃LR2)opt
,

with R ∈ [0; 1] by construction. This latter is helpful to make a decision. Indeed, we can
formulate the following decision rule:

• The closer the R measure is to the value 0, the strongest we do not reject the null hypothesis
H0;

• The closer the R measure is to the value 1, the strongest we reject the null hypothesis H1.

Note that our empirical experiences show us that already relatively small values of R, i.e.
0.05, suffice to reject the null hypothesis.

3. Fuzziness vs randomness

We provided in Berkachy and Donzé (2020a, 2022) simulation studies to explore the impact
of the fuzziness of the parameters on the confidence intervals. It is not the fuzziness embodied
naturally or after fuzzification in data, which is the centre of our attention. Indeed, following
our procedure we do have to compute the fuzzy maximum likelihood parameter ˆ̃

θML. For this
purpose, we use the method proposed by Denoeux (2011). As the result of the latter is a
crisp estimation, we thus have to fuzzify the parameter. Our simulations show that this step
of fuzzification has a greater influence on the intervals than the randomness issues from the
distribution of the data and appearing in the (1 − δ)-quantile of the distribution of the LR
statistic.



Moreover, note that our simulations show that the coverage rates are guaranteed by our LR
confidence intervals, and that the fuzziness of the ML-estimators do not influence the coverage
rates of the calculated fuzzy confidence intervals.

4. Empirical analysis

4.1 SHARE Data and variables

The SHARE Project intends to survey people all over Europe aged 50 or more. It is a
long-term panel devoted principally to questions of health of the population. Countries are one
dimension of the panel. A complete panel data set could be built from all the modules across
the waves. As our empirical application is more to illustrate our method than to conduct a
thorough empirical analysis, we complete our estimations based on the data from the generated
easySHARE data set. We do not perform a panel analysis. We simply choose to compare Switzer-
land with its neighbouring countries, i.e. France, Germany, Italy and Austria. The comparison
will be by means of two particular variables, the Childhood health status (childhood_health)
and the Self-perceived health (sphus). Table 1 gives the description of the variables. The data
from the wave 7, corresponding to year 2017, are used. Some filtering conditions are applied
to obtain a complete cases data set. Tables 3 and 4 show the numbers of observations of our
dataset of both variables by countries and categories.

The variable childhood_health is the perception, which could have a person aged 50
or over of his childhood health status. The variable sphus gives the actual individual perception
of his or her own state of health. Figure 1 gives the distribution of the crisp data by countries
of both variables.

4.2 Fuzzy modelling

Notice that both variables, childhood_health and sphus, are coded on a Likert scale
going from 1 (Excellent) to 5 (Poor). Such a coding naturally reflects a fuzziness in the data,
which we have to model. Indeed, this so-called linguistic variables can easily be fuzzified in
triangular fuzzy numbers. In this study, we model these fuzzy numbers by the membership
functions given in Table 2.

4.3 Results

We use the R package FuzzySTs (Berkachy and Donzé (2020b)) to produce our results.
We begin our analysis by estimating the fuzzy confidence intervals by the ratio method at the
confidence level 95% for both variables and for each country. These fuzzy intervals are shown
in Figures 2 and 3. Tables 5 and 6 give the lower and upper values of the support and core of
the intervals. A first remark is that all constructed fuzzy confidence intervals overlap. A simple
look at a pairwise comparison level shows us that some of the overlapping sections could be very
small, indicating us the potential rejection of the null hypothesis of the equality of means. It is
then important to compute the R statistic as show previously. Table 7 gives the R statistics for
pairwise comparisons between Switzerland from one side, and its neighbouring countries from
another one.

Let us first consider the test of equality of means of the variable childhood_health for
Switzerland and Austria, we obtain a very low R statistic of 0.0102735. In this case, we tend
to strongly not reject the hypothesis. To confirm this decision, we could run a Fuzzy ANOVA
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(FANOVA) for this case (see Berkachy and Donzé (2018a,b)). The FANOVA results for this test
are given in Table 8, and show that we cannot reject the hypothesis at 5%.

We consider also the test of equality of means of the variable sphus for Switzerland and
Germany. In this case, we obtain an R statistic about 0.2470543. This value is relatively far
from the value 0. In this sense, we intend to reject the null hypothesis of equality of means
of self-perceived health between Switzerland and Germany. The FANOVA results in Table 8
strongly confirms this rejection of hypothesis at 5%. For all other cases, the overlapping regions
between intervals seem smaller producing higher R statistics. In these latter cases, we tend to
reject the null hypotheses and in fact, these decisions are confirmed by a FANOVA as seen in
Table 8.

In conclusion, as shown by this simple analysis, we can infer that Switzerland differs from its
neighbouring countries in the perception of childhood health and self-perceived health as collected
by the SHARE survey. This was done by taking into account the fuzziness that is present in
the perception of respondents. Thus, being able to treat such vague data and to test it on the
equality of means between different groups is a benefit.

5. Conclusion

We have shown how to construct fuzzy confidence intervals by the so-called likelihood ratio
method. It appears that such intervals can be very useful in statistical inference. In particular,
we propose to use such intervals in the testing of the equality of means of two groups. A
decision rule is proposed. We applied successfully this approach on the SHARE data in order to
compare Switzerland with its neighbouring countries on the two variables childhood_health
and sphus. The decisions obtained from our hypothesis testing procedure is confirmed with a
fuzzy analysis of variance. It is clear to see that such testing tool is then a absolute asset when
data are considered fuzzy.



APPENDIX
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Figure 1: Distributions of the crisp data by countries
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Figure 2: Fuzzy confidence intervals for the mean (childhood_health)
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Figure 3: Fuzzy confidence intervals for the mean (sphus)



Tables

Variables Description
child-
hood_health

Childhood health status (On a scale of 1 to 5; 1:
Excellent; 5: Poor)

sphus Self-perceived health (US version) (On a scale of
1 to 5; 1: Excellent; 5: Poor)

Table 1: Variables

Values µX̃

1: Excellent (0,1,2)
2: Very good (1,2,3)
3: Good (2,3,4)
4: Fair (3,4,5)
5: Poor (4,5,6)

Table 2: Triangular symmetrical membership functions

Excellent Very Good Good Fair Poor Sum
Austria 705 1003 595 253 73 2629

Germany 575 944 1012 316 78 2925

Italy 1126 801 778 180 38 2923

France 557 586 723 158 92 2116

Switzerland 442 582 441 121 35 1621

Sum 3405 3916 3549 1028 316 12214

Table 3: Number of observations by countries and categories (childhood_health)

Excellent Very Good Good Fair Poor Sum
Austria 162 554 933 723 257 2629

Germany 119 380 1178 943 305 2925

Italy 258 540 1018 881 226 2923

France 130 235 931 580 240 2116

Switzerland 165 391 697 299 69 1621

Sum 834 2100 4757 3426 1097 12214

Table 4: Number of observations by countries and categories (sphus)

Support lower Core lower Core upper Support upper
Austria 1.233616 2.221609 2.247392 3.236316
Germany 1.445193 2.434300 2.457100 3.446688
Italy 1.042829 2.032189 2.055009 3.045396
France 1.357827 2.342394 2.374933 3.359892
Switzerland 1.212950 2.193807 2.234750 3.215834

Table 5: Support and core sets of the fuzzy confidence intervals at 95% (childhood_health)



Support lower Core lower Core upper Support upper
Austria 2.135964 3.123563 3.149393 4.136868
Germany 2.318464 3.308256 3.330615 4.319930
Italy 2.093722 3.082858 3.106294 4.095051
France 2.265794 3.250962 3.282500 4.267397
Switzerland 1.824227 2.804403 2.845128 3.825295

Table 6: Support and core sets of the fuzzy confidence intervals at 95% (sphus)

Variables Comparison dθ
∗

SGD dθ
∗

SGD opt R
childhood_health CH-AU 0.020576 2.002791 0.0102735

CH-IT 0.170280 2.002724 0.0850243
CH-FR 0.144450 2.002457 0.0721366
CH-GE 0.231527 2.002167 0.1156383

sphus CH-AU 0.311652 2.000983 0.1557495
CH-IT 0.269612 2.001186 0.1347265
CH-FR 0.441819 2.001320 0.2207637
CH-GE 0.494417 2.001249 0.2470543

Table 7: Distances between FCIs, and R statistics

childhood_health
Df Sum Sq Mean Sq F value Pr(>F)

CH-AU 1 0.42061 0.42061 0.40303 0.52556
CH-IT 1 30.25641 30.25641 30.07949 0
CH-FR 1 19.23801 19.23801 17.6259 3e-05
CH-GE 1 56.14826 56.14826 55.69841 0
sphus

Df Sum Sq Mean Sq F value Pr(>F)
CH-AU 1 97.45623 97.45623 92.40485 0
CH-IT 1 75.99624 75.99624 70.34347 0
CH-FR 1 179.4899 179.4899 180.1952 0
CH-GE 1 255.4123 255.4123 270.1339 0

Table 8: Fuzzy ANOVA for the variables childhood_health and sphus for different pairwise countries
as factor



REFERENCES

Berkachy, Rédina (2020): “The signed distance measure in fuzzy statistical analysis. Some theo-
retical, empirical and programming advances”. PhD thesis. University of Fribourg, Switzer-
land.

— (Aug. 2021): The Signed Distance Measure in Fuzzy Statistical Analysis. Theoretical, Em-
pirical and Programming Advances. Fuzzy Management Methods. Springer International
Publishing. isbn: 978-3-030-76915-4. doi: 10.1007/978-3-030-76916-1.

Berkachy, Rédina and Donzé, Laurent (Nov. 8, 2018a): “Fuzzy one-way ANOVA using the signed
distance method to approximate the fuzzy product”. In: Rencontres Francophones sur la
Logique Floue et ses Applications 2018. Ed. by Collectif LFA. LFA 2018. LFA. Arras, France:
CÉPADUÈS-ÉDITIONS, pp. 253–264. isbn: 978-2-36493-677-5.

— (2018b): “Fuzzy one-way ANOVA using the signed distance method to approximate the fuzzy
product”. In: ed. by Collectif LFA. LFA 2018 - Rencontres francophones sur la Logique Floue
et ses Applications, Cépaduès, pp. 253–264.

— (2020a): “Fuzzy Confidence Intervals by the Likelihood Ratio with Bootstrapped Distribu-
tion”. In: Proceedings of the 12th International Joint Conference on Computational Intelli-
gence - FCTA. INSTICC. SciTePress, pp. 231–242. isbn: 978-989-758-475-6. doi: 10.5220/
0010023602310242.

— (2020b): FuzzySTs: Fuzzy Statistical Tools, R package. url: https://CRAN.R-project.
org/package=FuzzySTs.

— (2022): Fuzzy Confidence Intervals by the Likelihood Ratio: Testing Equality of Means –
Application on Swiss SILC Data. SN Computer Science 3.5, p. 374. doi: 10.1007/s42979-
022-01257-z.

Börsch-Supan, A. and Gruber, S. (2022): easySHARE. Release version: 8.0.0. Ed. by SHARE-
ERIC. doi: 10.6103/SHARE.easy.800.

Denoeux, Thierry (2011): Maximum likelihood estimation from fuzzy data using the EM algo-
rithm. Fuzzy Sets and Systems 183.1. Theme : Information processing, pp. 72–91. issn:
0165-0114. doi: https://doi.org/10.1016/j.fss.2011.05.022.

Gil, Maria A. and Casals, Maria Rosa (Dec. 1, 1988): An operative extension of the likelihood
ratio test from fuzzy data. Statistical Papers 29.1, pp. 191–203. issn: 1613-9798. doi: 10.
1007/BF02924524.

Gruber, Stefan, Hunkler, Christian, and Stuck, Stephanie (Feb. 2014): Generating easySHARE.
Guidelines, Structure, Content and Programming. Working Paper Series 17-2014. SHARE.
Survey of Health, Ageing and Retirement in Europe. url: www.share-project.org.

Kruse, Rudolf and Meyer, Klaus D. (1987): Statistics with vague data. Vol. 6. Springer Nether-
lands.

Zadeh, Lotfi (1968): Probability measures of Fuzzy events. Journal of Mathematical Analysis
and Applications 23.2, pp. 421–427. issn: 0022-247X.

https://doi.org/10.1007/978-3-030-76916-1
https://doi.org/10.5220/0010023602310242
https://doi.org/10.5220/0010023602310242
https://CRAN.R-project.org/package=FuzzySTs
https://CRAN.R-project.org/package=FuzzySTs
https://doi.org/10.1007/s42979-022-01257-z
https://doi.org/10.1007/s42979-022-01257-z
https://doi.org/10.6103/SHARE.easy.800
https://doi.org/https://doi.org/10.1016/j.fss.2011.05.022
https://doi.org/10.1007/BF02924524
https://doi.org/10.1007/BF02924524
www.share-project.org

	

