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Abstract

We consider a reversible-jump Markov chain Monte Carlo algorithm to estimate the number
of change-points, their locations and the parameters of the rate and mean functions in a non-
homogeneous Poisson model. The model and algorithm are applied to ozone and particulate
matter data obtained from the Mexico City monitoring network. Results are compared to those
obtained in previous works using different approaches. Whereas in some cases the estimated
change-points are placed in similar locations in others they differ in both number and locations.
Additionally, in some cases different behaviours of the rate function are detected when compared

to those given by previous studies.
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1 Introduction

Inhabitants of many cities around the world suffer from exposure to high levels of pollution.
The adverse effects caused by this exposure can be very serious depending on the pollutant and
its concentration. Among the many pollutants affecting the population’s heath of a given city
are ozone (Oj), particulate matter with diameter smaller than 10 microns (PMjg) and those
with diameter smaller than 2.5 microns (PMsy5). The hazardous effects of long-term exposure
to those pollutants are also well known. Ozone may cause eyes irritation and upper respiratory
system problems (Bell et al., 2004; Kelly, 2003; Loomis et al., 1996; Likens, 2010; WHO, 2006).
Besides causing visibility problems and damage to the vegetation (EPA, 2018), if a population
is exposed for long periods of time to high concentrations of PM;y and PMs 5 there may be an
increase in the risk of cardiovascular disease, lung cancer and other cardiopulmonary disorder
(see, for instance, EPA, 2018; Feng et al., 2016; Janssen et al., 2013; Mauderly and Oberdorster,
1997; Xing et al., 2016; Thurston, 1996; It6 and Thurston, 1996; WHO, 2006; among others).

The interest here resides in comparing the results given by previous works (Achcar et al.,
2008, 2011; Rodrigues et al., 2011, Starez-Sierra et al., 2019, 2022) with those given by a
reversible-jump Markov chain Monte Carlo (RJ-MCMC) algorithm (Green, 1995; Carlin and
Chib, 1995) in terms of estimating of the number of change-points their locations and the
parameters of the rate functions in a non homogeneous Poisson model used to study the be-
haviours of ozone, PM;y and PM, 5 data obtained from the Mexico City monitoring network.
The behaviour we are interested is related to the occurrences of exceedances of the correspond-
ing environmental thresholds for those pollutants, as well as the locations of points in time
where the data may change behaviour under a non-homogeneous Poisson models with change-
points. In the present work we consider a RJ-MCMC to estimate the parameters present in
the model. Reversible-jump MCMC algorithms have also been used to estimate the number
and location of change-points in Poisson models with applications to air pollution data as in,
for instance, Gyarmati-Szabo et al. (2010). In that work the rate function was a step function
and a RJ-MCMC algorithm was used to estimate the location and number of change-points, as

well as the values of the constant functions between change-points. The algorithm was applied



to nitrogen oxides (NOy and NO) and carbon monoxide (CO) data from the city of Leeds in
the United Kingdom. The present work differ from that of Gyarmati-Szabé et al. (2010) when
we consider a non-homogeneous Poisson model with a Weibull rate function and change-points
and use the algorithm to estimate the parameters of this rate function, as well as the number
and locations of the change-points. The algorithm is an adaptation of that given by Green
(1995) and that given by Alvarez et al. (2006) where instead of proposing new parameters us-
ing functions of the parameters present in the model at a given iteration, we propose them by
generating directly from appropriate distributions. That simplifies the form of the acceptance
probabilities.

This work is organised as follows. In Section 2] we present the mathematical and the
Bayesian formulations of the model. Section |3| gives the description of the reversible-jump
MCMC algorithm. In Section [4] the model and algorithm are applied to Mexico City ozone,
PM;y and PM, 5 measurements. Section [5| presents a discussion of the results and in Section
[6] we conclude. In an appendix, placed after the section References, some plots and additional

information used in the main text are given.

2 The mathematical and Bayesian models

Denote by [0, 7] (T" > 0) the observational period where measurements were taken. Let N; > 0
be the random variable recording the number of times that a pollutant’s concentration exceeds
its corresponding environmental threshold L (L > 0) in the time interval [0,¢), ¢ > 0. Assume
that there are K > 0 days in which exceedances occurred during [0, T, denote by dy,ds, . .., dg
these exceedances days, and by D = {d;,ds, ..., dk} the observed data. Let N = {N; : t > 0}
be a non-homogeneous Poisson process with rate and mean functions A(t) > 0 and m(t) =
f(f A(s)ds, t > 0, respectively. We take A(-) of the Weibull form, i.e., A(t) = (a/o) (t/o)*!
where m(t) = (t/o)® is the associated mean function, ¢t > 0; a, o > 0.

Remark. The Weibull rate function is chosen over other possibilities because depending on
the value of the parameter «, the function A(-) may present either a decreasing, a constant or

an increasing behaviour in addition to the fact that this rate function has a simple form and



the analysis is made easier.

For M > 0 a known and fixed natural number, let I € S = {0,1,..., M} be the number of
change-points present in the model and denote them by 71,75, ...,7;. If I =0, then no change-
points are present. The variables [ and 7;, 7 = 1,2, ..., I are considered parameters that need to
be estimated. Take 79 = 0 and 7747 = T'. Let X\;(¢) denote the rate function between the change-
points 7,1 and 7, i = 1,2,..., I + 1, i.e,, \i(t) = (i /0;)(t/0;)* 1 with m;(t) = (t/o;)* the
corresponding mean function where o; and o; are parameters that also need to be estimated,
1 = 1,2,...,1 + 1. Thus, in the case of multiple change-points, the vector of parameters
is ¢ = (I,7,0), where 7 = (11,79,...,77) and @ = (01,04,...,0;,1), with 8; = (o, 0;),
i=1,2,....,1+1. If I =0, then the vector of parameters simplifies to ¢ = 8 = (o, ). We
assume that given 7 and I, the parameters ay,...,a;11,,01,...,0741 are independent a priori
and that given I, T depends a priori only on /. Hence, given that we have I change-points, the
vector ¢ is an element of the state space C; = {I} x RL x R x RPN = {1} x R¥*2 1 > 1.
When I = 0, the state space simplifies to Cy = {0} x Ry x Ry = {0} x R%. These subspaces
belong to the general space C = U C;.

We follow the Bayesian point of view to estimate the parameters present in the model
(Gamerman and Lopes, 2000). Hence, we use the fact that for P(6|D) and P(0), respectively,
the prior and posterior distributions of the vector of parameters @ of a model describing D,
and L(D|6) the likelihood function, we have P(6|D) o« L(D|8) P(6). In the present case,

the form of the posterior distribution is
P(¢|D) x P(I,7,e,0|D)=L(D|I,7,a0) Pla|rI) Po|r1) P(r|1) P()

where P(a|T,I), P(o|7,1), P(T|I) and P(I) are the prior distributions of a, o, 7 and I,
respectively, given as follows.

Given T and I, the parameters a; and o; will have gamma prior distributions Gamma(ay, az)
and Gamma(b, by), respectively, with a; and b; the shape and as and by the scale parameters;
i=1,2,...,1+1; as in Green (1995), Gyarmati-Szabé et al. (2010) and Ai (2012), 7 will have
as prior distribution the distribution of the even labelled order statistics of (2 /41) independent
points uniformly distributed in [0, 7] (see, for instance, Arnold et al., 2008). The number of



change-points will have as its prior distribution a truncated Poisson defined on the set S with
parameter A, i.e., P(I) oc (\1/I!) 1s(I), where 14(z) = 1, if x € A and is zero otherwise.

The hyperparameters a1, as, by, bo and A are considered known and will be specified when
the model is applied to the data. Estimation of the parameters will be performed using samples
drawn from the respective posterior distributions using a RJ-MCMC algorithm programmed
in R.

When the algorithm is in a version of the model with I > 1 change-points, the likelihood
function is of the form (Yang and Kuo, 2001; Achcar et al., 2011)

N~

LD|¢) H Ai(di) | exp [=ma(71)]

I NTj

H Aj(di) | exp (—[my(7;) — m;(7i-1)]) (1)

§=2 \i=Nr;_,+1

H Ai1(d) | exp (= [mpa(T) — mppa(11)])

=Ny, +1

with IV, representing the number of exceedance days before the change-point 7,7 =1,2,...,1.
When I = 0, expression (1) simplifies to L(D | 0) = [Hfil )\(di)} exp [-m(T)] (Cox and Lewis,
1966; Lawless, 1982).

In order to estimate the number of change-points present in the model best describing the
behaviour of the data, we need to use some selection criteria. Besides using the sample generated
by the RJ-MCMC algorithm to obtain the mean and the mode of the distribution of the number
of change-points, we will also use the graphical criterion which assess the fit of the estimated to
the observed means, the Bayesian information criterion (BIC), the marginal likelihood function
(ML) - see for instance Raftery (1996) - the sum of the absolute difference (SAD) between
the accumulated observed and estimated means, and their plots. The BIC, ML and SAD are
defined as follows. The BIC is given by BIC = —2 """ log(L[D| ;)] +p log(n), where p is the
length of 8; and n is the sample size - see, for example, Schwarz (1978) and Akaike (1977, 1978).
The smaller the value the more adequate is the model. The ML of Model [ may be approached
by a Monte Carlo estimate, denoted by V;, and given by V; = = Zf\i/l L (D | GZ(Z)) where M’
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is the size of the simulated Markov chain Monte Carlo sample and 01@, 1=1,2,..., M, is the
sample generated when Model [ is used. The model with the highest V; is the chosen model.
The SAD is given by SAD = )", |m(t) — m(t)|, with m(-) the estimated value of the observed
m(-) which in our case correspond, respectively, to the estimated mean function obtained using
the respective estimated parameters, and the accumulated observed mean. According to this

criterion the selected model is the one with the smallest SAD value.

3 A reversible-jump MCMC algorithm

In order to start the description of the algorithm, first define

b; = ¢ min {1, %—i]_)l)} and d; = ¢ min {1, %}
with ¢ > 0 a constant such that by + d; < 1 and P(-) the prior distribution of the number of
change-points. Note that since I € {0,1,2,..., M}, we have dy = by, = 0. Additionally, by
definition the reversibility condition b; P(I) = d;.1 P(I + 1) is satisfied.

When we have I change-points, three types of moves may be proposed: either the increase
by one of the number of change-points (birth) with probability b;, the decrease by one of the
number of change-points (death) with probability d;, and change in the position of one of the
change-points (replacement) with probability r; = 1—b;—d;. The possible moves are described

as follows.
(a) Birth move: if a birth move is proposed, then

i. As in Green (1995), Gyarmati-Szabd et al. (2010) and Ai (2012), generate a new
7’ using a uniform distribution U(0,7"). This new change-point will belong to an
interval [1;_1, 7%) for some k € {1,2,...,I+1} with probability one. Denote by 7/ =
(71,73, -+, Tr41) the new vector of change-points where 77 = 75, j = 1,2,... .k — 1,

/

T, =7,7,=71,j=k+1,k+2,...,1+1, with the appropriate adaptation in the

case where either the first or the last subinterval is chosen.



ii. With probability 1/2 choose either [r;_,,7;) or [, 7;,,) to host the new o' and
o’ which are generated using their corresponding prior distributions. If [7]_;,7;) is
selected, then relabel the coordinates of the new vector of parameters of the rate
function as follows: o) = o and 0 = 0, j = 1,2,...,k =1, aj, = o/ and 0}, = o,
oy=ajrand oy =01, j=k+1,k+2,...,1+2 Let &' = (a},a3,...,0a7,,) and

/

o = (o,0,, ... 0 be the rate functions new vector of parameters. In the case
1 ™2 » Y T42

[T, Tr.1) is selected, the relabelling is made in a similar way.

Indicate by ¢’ = (I + 1,7/, &, 6’') the new overall proposed vector of parameters. In this
case the acceptance probability is

LD|I+1,7,a,0") P& |7, I+1) Plo'|7/,1+1)
LD|I, T, a,0) Pla|T,I) Plo|T,I)

Alp, @) = min{l,

POILLD PUAD 90'.9) 1)
Pl P Q)

where J is the Jacobian of the transformation which is equal to one, with

P(r'|I+1) @Q2I4+3)2(I+1) (7' —71) (e — 7")

P(r|I) T (7k = Th-1)

(see, for instance, Arnold et al., 1992; Green, 1995; Gyarmat et al., 2010; Ai, 2012), and
where Q(+, ) is the proposal distribution which is such that

Q. d) 1 dragy

Q. ¢") B by
where B = (1—a) P(ay |7/, I+1) P(o, |7, 1+1)+aP(aj,, |7/, 1+1) P(oj,, | T/, 1+1)
with a = 0 if the newly generated o’ and ¢’ are placed in the interval [7_,, 7;) and is equal
to one if they are placed in the new (k + 1)th interval [, 7/ ), and P(-|7',1 4+ 1) and

P(-|7,1) the corresponding prior distributions of the parameters of the rate functions.
(b) Death move: if a death move is proposed, then

i. Select an index k € {1,2,..., 1} uniformly and remove 7;. Denote by 7' = (71,74, . ..

Y

77_1) the new vector of change-points where 77 = 7;, j = 1,2,...,k — 1, 7} = 75,4,
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J=k,k+1,...,1—1, with the appropriate adaptation in the case where either the

first or the last change-points is chosen.

ii. With probability 1/2 choose either ay and oy or ay1 and og4q to be removed. If
ay and oy, are removed, then the coordinates of the new vector of parameters of the
rate function are as follows: o = a; and 0 =0, j = 1,2,..., k=1, o, = ;4 and
o =051, =k k+1,..., I Let & = (a),qy,...,a7) and o' = (0], 03,...,07) be

the rate function new vector of parameters. If oy, and o, are chosen, then the

relabelling is performed in a similar way.

Indicate by ¢’ = (I — 1,7',a’,6”) the new overall proposed vector of parameters. The
acceptance probability of the present move is

LD|I-1,7.d,0") Pl |T',]I—1) Plo'|T',1—1)
LD|I,7,a,0) Pla|T,1) Plo|T,1)

Alg,¢) — min{l,

POIL_D) 1) 26'9) ;)
Pl PO) Q6.9

where J is the Jacobian of the transformation which is equal to one, with

P(r'|1-1) T (The1 — Th1)

P(r|1) (21 +1) 21 (7py1 — 7k) (T — Th1)
(see, for instance, Arnold et al., 1992; Green, 1995; Gyarmat et al., 2010; Ai 2012), where

Q(+,-) is the proposal distribution which is such that

Q¢ ¢) _ b1z
Qo.¢) ~ drj

with C = (1 —a) P(ay | 7,1) P(oy | 7,1) + a P(ay1 | T, 1) P(oksq | 7, 1) with a = 0 if the

deleted coordinates are a4, and oy and is equal to one if the deleted coordinates are a1
and oy, 1, with P(-|7,I) and P(-|7',I — 1) the corresponding prior distributions of the

parameters of the rate functions.
(c) Replacement move: if the replacement of one change-point, then

i. As in Green (1995), Gyarmati-Szabd et al. (2010) and Ai (2012), select an in-

dex k € {1,2,...,1} uniformly and generate a new 7’ using a uniform distribution
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U(Tk—1,Tks1). Denote by 7 = (7{,74,...,77) the new vector of change-points where
T="1)=12.. k-1, n=1,7="77j=k+1,k+2.. .1 with the
appropriate adaptation in the case where either the first or the last change-points is

chosen.

ii. Generate new o/ and o’ using their corresponding prior distributions. With proba-
bility 1/2 choose either oy and o or a1 and oy to be replaced. If oy and oy are
chosen, then the coordinates of the new vector of parameters of the rate function
are as follows: o) = a; and 0 = 0y, j = 1,2,...,k =1, aj, = o/ and 0}, = o',
o =ajand o) =0y, j=k+1Lk+2,... I +1 Let & = (a},03,...,07,,) and

/

o' = (01,05, ...,07,,) be the rate function new vector of parameters. If oy and

o1 are chosen, then the relabelling is performed in a similar way.

Indicate by ¢ = (I,7',a’,0’) the new overall vector of parameters. The acceptance

probability is of the present move is

N ) LD|I,7 o 0") Pl |7, 1) Plo'|T',1)
Al @) = mm{l’ LD|I.7,a.0) Pla|r.]) Plo|=.])

Pl P 06.9)1)
P(rID) P(I) Q(6,9)

where J is the Jacobian of the transformation which is equal to one, with

P (e = 7) (7 = ™)

P(r[I) (Thr1 — 7o) (Te — Th—1)
(see, for instance, Arnold et al., 1992; Green, 1995; Gyarmat et al., 2010; Ai, 2012), and

where Q)(+,-) is the proposal distribution which is such that

1

Q(P', P) p A

<
~l=

I

Q. ¢) e T

Th—1—Tk+1

~l—=

where

(1 —a) P(ag|7,I)P(oy | T,I) +aPlags1 | 7,I) P(ogsr | T, 1)

D =
(1 —a)P(aj |7, 1)P(oy, | T/, 1) +a P(aj,,, | T/, 1) P(oj 4 | T/, 1)

with @ = 0 if the replaced coordinates are o and o and is one if a1 and oy are

replaced, with P(-|7/,I) and P(-|7,I) the corresponding prior distributions.
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4 Application to the Mexico City data

The model and algorithm are applied to three sets of data obtained from the Mexico City
monitoring network (http://www.aire.cdmx.gob.mx). We consider ozone, PM;q and PMy 5
measurements. In all cases we take the Mexico City metropolitan area overall daily maximum
measurements (given in parts per million - ppm - in the case of ozone and in microgram per
cubic meter - pg/m? - in the cases of PM;y and PMy5). We have considered measurements
obtained from 01 January 1995 to 31 December 2019 in the cases of O3 and PM;y and from 01
January 2004 to 31 December 2019 in the case of PMy 5. That gives us 9131 ozone and PMq
observations and 5844 PM, 5 measurements. (The shorter length of the PM, 5 observational
period is due to the fact that PM, 5 started being systematically monitored only in mid-2003).
Minute by minute measurements are taken in each station of the monitoring network and
the hourly averaged result is reported every hour. The ozone daily maximum measurement in
a given station is the maximum of the hourly averaged results reported at that station. Ozone
overall daily maximum measurement for the metropolitan area is the maximum of all daily
maxima recorded in all stations of the monitoring network. In the cases of PM;y and PMy 5,
the daily measurements in a given station are the average results over the 24-hour period of
the corresponding pollutant at that station. The PM;y and PM, 5 overall daily maximum
measurements for the metropolitan area are the maxima of the daily averaged results for all
stations in the network. The thresholds considered are those specified by NOM (2014a, 2014b),
i.e., 0.095 ppm for ozone, 75 pg/m? for PMyy and 45 pug/m? for PMys. During the observed
period there were 6706, 5211 and 1028 ozone, PM;, and PMs 5 exceedances, respectively.
Different values of A\ were considered as hyperparameters for the prior distribution of the
number of change-points I. Hence, in the case of ozone we take A = 1,1.5,2; we have A\ =
0.9,1,1.2 in the case of PMjy and A = 0.9,1.2,1.5 in the case of PMy 5. In all cases we take
M = 8. Hence, the state space of the number of change-points I is S = {0,1,2,...,8}. When
ozone data are considered, the hyperparameters of the prior distributions of the parameters «a
are a; = 177 and ay = 1/180 and, in the cases of the parameters o, are b; = 30 and by = 1/32.
If we consider the PM;, data we have a; = 3855.119, ay = 1/4037.43, by = 60.885 and
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by = 1/56.40477. In the case of PM, 5 the hyperparameters are a; = 989.0532, as = 1/1199.82,
by = 19.78535 and by = 1/16.15016. In all cases we take ¢ = 0.5.

Remark. The values of the hyperparameters in the case of ozone were obtained from results
given in previous studies where subsets of the datasets considered here were used (Starez-Sierra
et al. 2019; Rodrigues et al. 2019; Achcar et al. 2011). In the cases of and PM;y and PMy 5

we have used information provided by the model when one change-point was assumed.

4.1 Results

Estimation of the parameters were made using samples of size 40000 obtained from five chains
after a burn-in period of 20000 iterations taking every 10th generated values. In Table 1,
given in the Appendix A, we have the values of the BIC, ML and SAD for each model and
pollutant, and in Table 2, also in the Appendix A, we have the distribution of the numbers of
change-points, as well as their mean values estimated using the RJ-MCMC generated samples.
Additionally, in Figures 1 and 2, given in the Appendix B, we have, respectively, the plots of
the accumulated observed and estimated means and the plots of their absolute differences.

Looking at Table 1, we see that in the case of ozone, of the three criteria, two choose the
model with A = 1 with two change-points. The third criterion selects the model with A = 1.5
with one change-point. If we consider the results when the PM;, data are used, two criteria
choose the model with A = 0.9 with eight change-points. The third criterion prefers the model
with A = 1 and eight change-points. In the case of PMs 5 the model with A = 1.5 is chosen by
two of the criteria. One of them prefers the model with three change-points and the other with
eight. The third criterion chooses the model with A = 0.9 with eight change-points.

If wee look at the results given by Table 2, we see that the estimated means of the number
of change-points are 3 and 4 for all values of A in the cases of ozone and PM;g, respectively,
and if we consider the PMs 5 data, then we have that the estimated values are 4 in the cases of
A =0.9,1.2 and it could be either 4 or 5 for A = 1.5. The values of the modes coincide with the
estimated means in the cases of PM;g and PMs 5 and all values of A, with the case of A = 0.9

and PMyq closely followed by the model with three change-points. In the case of ozone, the
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estimated number of change-points using the mode is 2.

If we turn our attention to the plots in Figures 1 and 2, in the case of ozone (see top three
plots), the model with two change-points (continuous blue lines) provides the best fit for all
values of A with the model with three change-points (continuous pink lines) and A\ = 1.5 also
giving a good fit. If we consider the case of PM;q (see plots in the second row of the figures),
results are a little fuzzy. We may have that the model with either three (continuous pink lines)
or eight (dotted blue lines) change-points is suitable for all values of A with the exception of
the case where A = 1 in which the preferred model is the one with seven change-points (dashed
green line). Similar disperse results are found when we look at the third rows of the figures
where we have the plots when PM, 5 data are used. In this case we have that almost all models
have a good fit, with the exception of the case where A = 0.9 in which case by looking at Figure
1, we have that the model with eight change-points (dotted blue line) does not provide a good
overall fit and in Figure 2, we have that the smallest difference could be given by the model
with either three (continuous pink lines) or four (dashed black lines).

Therefore, taking into to account the selection made using the different criteria and selecting
those preferred by more criteria and using parsimony, we may choose the model with A = 1 with
two change-points in the case of ozone, the model with A = 0.9 and three change-points when
we consider the PMy data and, in the case of PMs 5, we could use the model with A = 1.5 with
four change-points. The estimated values of the parameters in each chosen model are given in
Table 3 in the Appendix A.

Looking at Table 3 we see that the change-points were located in the years 2003 and 2009
in the case of ozone; one in 1995 and two in 2015 if we consider the PM;, measurements and
one in 2004 and 2011 and two in 2019 in the case of PMy 5. We see that the two last detected
change-points in the cases of PM;y, and PM, 5 are very close to each other. We could not find a
real reason to why these change-points are so close to each other since in those periods of time
there were no major changes that would justify their proximity. Note that even though the
values of « in all cases are very close to each other, with the exception of the PM, 5 data when
we move from before to after the second change-point, they decrease as we move through the

change-points. That indicates that the speed at each exceedances occur decreases slightly from
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change-point to change-point. In the case of PMs 5 the values of « restart to go from larger to
smaller once we go from before to after the third change-point. Hence, we return to the case
of a slowing down in the speed of occurrence of PM, 5 exceedances.

In order to see how the selected estimated rate functions behave, in Figure 3 given in the
Appendix B, we have their plots for all pollutants. Looking at Figure 3 we see that with the
exception of the plots associated with the PMs 5 (bottom plot), in spite of having close values
of &, when we move through the change-points, in the cases of ozone (top left plot) and PM;,
(top right plot) we see that there are small but significant differences in the values of the rate
functions in the time intervals between change-points.

If we consider the selected models using the mode of the distribution of the number of
change-points, we see, by looking at Table 2, that the selected models are A = 1.5 and two
change-points (with 7 = 3259 and 7, = 5312) in the case of ozone, A = 0.9 and four change-
points in the cases of PMjy (with 7y = 102, 75 = 4188, 73 = 7729 and 74 = 7790) and PM, 5
(with 7 = 103, 7 = 2884, 73 = 5670 and 74 = 5775). In these cases the locations of the
change-points were in the years 2002 and 2009 in the case of ozone; one in 1995 and 2006 and
two in 2016 in the case of PMjg; and one in 2004 and 2011 and two in 2019 if we consider
the PM, 5 data. Note that, with the exception of the case where the PM;y data are used in
which case an extra change-points located in the year 2006 is detected, the locations of the
change-points do not differ much from the ones obtained using the criteria considered here to

select the suitable model.

5 Discussion

When we compare the results obtained using the RJ-MCMC algorithm with the results pro-
duced by previous works where an empirical Bayes approach was used, we have the following.
In Suarez-Sierra et al. (2019, 2022) where we have an observational period ranging from 01
January 2004 to 31 August 2015 for all three pollutants, selected models were the model with
zero, one and three change-points when the ozone, PM;q and PMs 5 data were used, respec-

tively. The change-points locations were in the year 2011 in the case of PM;y and in the years

13



2005, 2008 and 2013 if we consider the PM, 5 data.

In the case of PMjy the RJ-MCMC algorithm detects two change-points (which could be
considered as only one due to their proximity and the lack of reasons for having a change in
the behaviour of the data) at the end of the observational period considered in Starez-Sierra et
al. (2019), but it misses the one located in the year 2011. The other estimated change-points
given by the present algorithm are located outside that observational period.

When we consider the PM, 5 data the number of change-points differs when the empirical
Bayes approach and the RJ-MCMC algorithm are used. However, since the two last change-
points estimated by the RJ-MCMC algorithm are very close to each other, they could be
considered as just one. Even though their locations vary they are not that different when
we use both approaches. In the case of the estimated parameters « of the rate functions the
RJ-MCMC algorithm does not detect the increasing behaviour between the second and third
change-points as obtained in Stuarez-Sierra et al. (2022).

When we compare the results related to the ozone data, we have that in Starez-Sierra et
al. (2019) the empirical Bayes approach did not detect any change-points during the time span
ranging from 01 January 2004 to 31 August 2015. However, the RJ-MCMC algorithm has
detected two change-points during that time span.

In another time frame, consider the results given by Rodrigues et al. (2019) where ozone data
from 01 January 1995 to 31 December 2010 were used. In that work a spatial component was
considered and data from ten stations were taken into account. Estimation of the parameters
were also made using an empirical Bayes approach. In that work, two change-points were
detected for the data of all stations. They were located in the years 2001 and 2007 which differ
by only two years from those obtained using the RJ-MCMC algorithm.

Consider now the results given in Achcar et al. (2011). In that work ozone data obtained
from 01 January 1990 to 31 December 2005 were used. The selected model detected the
presence of one change-point whose location is in the year 2001. This coincides with the first
of the estimated change-points in Rodrigues et al. (2019) and it is not far away from the first

change-point obtained using the present algorithm.
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6 Conclusion

In the present work we have considered a reversible-jump MCMC algorithm to estimate the
parameters in a non-homogeneous Poisson model in the presence of change-points, as well
as their number and locations. The model and algorithm were applied to ozone, PM;, and
PM, 5 data from Mexico City. Several criteria were used to select the model that best fit each
dataset. Results were mixed. Models with two, three and four change-points were detected
when the ozone, PM;y, and PMs 5 data were used, respectively. Note that even though some
of the selection criteria have chosen the model with eight change-points, looking at Table 2
(Appendix A) we see that this model was visited by the algorithm only a small proportion of
the iterations. Hence, the selection of this model by some of the criteria might be associated
with the large number of parameters.

Even though in all the previous works and in the present, the number and locations of the
change-points are more or less compatible, the difference lies in the values of the estimated
parameters of the rate functions. In a more localised time span, changes in the behaviour of
the rate function are detected, i.e., in some cases we have changes from increasing to decreasing
and vice-versa. However, when the global picture is used some subtleties are not reflected in
the results.

We would like to point out that in 2021 new regulations were published considering tighter
threshold for ozone, PM;q and PMy 5 (NOM 2021a, 2021b). In those regulations the threshold
for ozone changed to 0.09 ppm when the one hour average measurements are used. In the
cases of the 24-hour PM;y and PM, 5 averages, a stead decrease in the threshold values will be
applied until the stricter values established by the World Heath Organisation 2005 guidelines
for the year 2025 are reached.
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Appendix

In this appendix we present the tables with the results of the estimated values of the discrimi-
nation criteria and estimated parameters of the selected model for each dataset. We also give

the plots related to the mean and rate functions of the selected models.

A. Tables

In this section we present the tables with the values of the BIC, ML and SAD for all models and
datasets. We also give the table with the estimated distribution probability of the number of
change-points, as well as the estimated mean obtained using the RJ-MCMC algorithm generated
samples for all models and datasets. Finally, we present the table with the estimated parameters

for the selected model when each dataset is considered.
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BIC, ML and SAD values for each model and pollutant. We use “-” to indicate the fact that

Table 1:

the model with the corresponding number of change-points either was not visited by the algorithm or

was visited an insignificant number of times.
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chpt 0 1 2 3 4 5 6 7 8 Mean
Ozone A=1 - 0.057 0.5288 0.1762 0.1562 0.0651 0.0141 0.0023 0.0003 3
A=15|—- 0.0334 0.5851 0.1332 0.1612 0.0671 0.0165 0.0029 0.0006 3
A=2 — 0.0363 0.5423 0.1451 0.1334 0.0902 0.0392 0.0112 0.0023 3
PMy, A=09 |- - - 0.379 0.384 0.171 0.053  0.011 0.002 4
A=1 — — — 0.282  0.382 0.222 0.082 0.026  0.006 4
A=1.2 1 - - - 0.226  0.374  0.255 0.108  0.031 0.006 4
PMss A=09 |- - - 0.328  0.415  0.196 0.05 0.01 0.001 4
A=12 1 - — - 0.229  0.397 0.255 0.092 0.023 0.004 4
A=15| - — — 0.172  0.364 0.289 0.129 0.037  0.009 4-5

Table 2: Distribution and mean of the number of change-points for each model and dataset estimated using
the values generated by the RJ-MCMC algorithm. We use “~” to indicate that the corresponding value either

was not part of that specific model or the value was of order smaller that 1073,

Ozone PM10 PM2_5
Mean (SD) MC Error Mean (SD) MC Error Mean (SD) MC Error
ap | 0.976 (1.4E-2) 1.16E-3 0.97 (1.4E-2) 5.5E-3 0.821 (2.1E-2) 3.4E-3
as | 0.9598 (1.8E-2)  1.57E-3 | 0.955 (1.5E-2)  24E-4 | 0.824 (2.6E-2)  2.7E-4
as | 0.943 (1.6E-2) 1.43E-3 0.953 (1.5E-2) 1.8E-3 0.825 (2.6E-2) 2.7TE-4
ay - - 0.933 (1.4E-2)  3.4E-3 | 0.824 (25E-2)  8.9E-4
as - - - - 0.806 (2E-2)  1.2E-3
o1 | 0.9199 (0.101)  8.38E-3 | 0.999 (8.7E-2)  3.2B-2 | 1236 (0.192)  3.2E-2
oo | 0.9297 (0.164) 1.51E-2 1.076 (0.138) 2.1E-3 1.221 (0.275) 2.8E-3
o3 0.967 (0.166) 1.53E-2 1.133 (0.135) 1.7E-2 1.225 (0.273) 2.8E-3
o4 - - 1.221 (0.124)  2.1E-2 | 1.224 (0.285) 1E-2
o5 - - - - 1.335 (0.252)  1.8E-2
T1 3241 (315.7) 20.59 102 (1.534) 0.545 103 (2.64) 0.328
To 5289 (241.9) 19.38 7439 (1127.42) 448.23 2880 (1258.87) 11.21
T3 - - 7462 (1144.29) 458.08 5665 (59.41) 4.84
T4 - - - - 5771 (50.07) 5.57

Table 3: Estimated means, standard deviations (indicated by SD) and MC Error of the parameters for each
selected model and dataset. We use “~” to indicate that the corresponding parameter was not part of that

specific model.

B. Figures

In the this appendix we present the plots of the accumulated observed and estimated means
when all pollutants, hyperparameters A and number of change-points present in each version
of the non-homogeneous Poisson model are used. We also present the plots of their absolute
differences which indicate the places of the best fit to the observed means of each estimated

means. Additionally, the plots of the rate functions of the selected models are also given.
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Figure 1: Accumulated observed and estimated means in the case of ozone with A = 1, 1.5,2 (from left
to right, first row plots), PMg with A = 0.9, 1, 1.2 (from left to right, second row plots) and PMs 5 with
A =0.9,1.2,1.5 (from left to right, third row plots). Black continuous lines are the observed means,
green dotted light are the cases where one change-point is allowed, blue continuous lines represent the
cases with two change-points, pink continuous lines represent the cases where we have three change-
points, black dashed lines are the cases where we have four change-points, dashed grey lines are the
five change-points models, dashed red lines represent the cases with six change-points, dashed green
lines are the cases where we have seven change-points and the dotted blue lines represent the cases
with eight change-points.
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Figure 2: Absolute differences between the accumulated observed and estimated means in the case
of ozone with A = 1,1.5,2 (from left to right, first row plots), PMjp with A = 0.9,1,1.2 (from left
to right, second row plots) and PMg 5 with A = 0.9,1.2,1.5 (from left to right, third plots). Black
continuous lines are the observed means, green dotted light are the cases where one change-point
is allowed, blue continuous lines represent the cases with two change-points, pink continuous lines
represent the cases where we have three change-points, black dashed lines are the cases where we have
four change-points, dashed grey lines are the five change-points models, dashed red lines represent the
cases with six change-points, dashed green lines are the cases where we have seven change-points and
the dotted blue lines represent the cases with eight change-points.
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Figure 3: Rate functions of the selected model for each pollutant. Black, red, green, blue and grey
lines correspond to the rate functions before de first change-point, between the first and second change-
points, between the second and third change-points, between the third and fourth change-points and
between the fourth and fifth change-points.
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