
A non-homogeneous Poisson model and a

reversible-jump MCMC algorithm to estimate the

probability of occurrences of air pollution exceedances

Eliane R. Rodriguesa,1, Mario H. Tarumotob, Juan A. Cruz-Juárezc, Hortensia J.
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Abstract

We consider a reversible-jump Markov chain Monte Carlo algorithm to estimate the number

of change-points, their locations and the parameters of the rate and mean functions in a non-

homogeneous Poisson model. The model and algorithm are applied to ozone and particulate

matter data obtained from the Mexico City monitoring network. Results are compared to those

obtained in previous works using different approaches. Whereas in some cases the estimated

change-points are placed in similar locations in others they differ in both number and locations.

Additionally, in some cases different behaviours of the rate function are detected when compared

to those given by previous studies.
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1 Introduction

Inhabitants of many cities around the world suffer from exposure to high levels of pollution.

The adverse effects caused by this exposure can be very serious depending on the pollutant and

its concentration. Among the many pollutants affecting the population’s heath of a given city

are ozone (O3), particulate matter with diameter smaller than 10 microns (PM10) and those

with diameter smaller than 2.5 microns (PM2.5). The hazardous effects of long-term exposure

to those pollutants are also well known. Ozone may cause eyes irritation and upper respiratory

system problems (Bell et al., 2004; Kelly, 2003; Loomis et al., 1996; Likens, 2010; WHO, 2006).

Besides causing visibility problems and damage to the vegetation (EPA, 2018), if a population

is exposed for long periods of time to high concentrations of PM10 and PM2.5 there may be an

increase in the risk of cardiovascular disease, lung cancer and other cardiopulmonary disorder

(see, for instance, EPA, 2018; Feng et al., 2016; Janssen et al., 2013; Mauderly and Oberdörster,

1997; Xing et al., 2016; Thurston, 1996; Itô and Thurston, 1996; WHO, 2006; among others).

The interest here resides in comparing the results given by previous works (Achcar et al.,

2008, 2011; Rodrigues et al., 2011, Súarez-Sierra et al., 2019, 2022) with those given by a

reversible-jump Markov chain Monte Carlo (RJ-MCMC) algorithm (Green, 1995; Carlin and

Chib, 1995) in terms of estimating of the number of change-points their locations and the

parameters of the rate functions in a non homogeneous Poisson model used to study the be-

haviours of ozone, PM10 and PM2.5 data obtained from the Mexico City monitoring network.

The behaviour we are interested is related to the occurrences of exceedances of the correspond-

ing environmental thresholds for those pollutants, as well as the locations of points in time

where the data may change behaviour under a non-homogeneous Poisson models with change-

points. In the present work we consider a RJ-MCMC to estimate the parameters present in

the model. Reversible-jump MCMC algorithms have also been used to estimate the number

and location of change-points in Poisson models with applications to air pollution data as in,

for instance, Gyarmati-Szabó et al. (2010). In that work the rate function was a step function

and a RJ-MCMC algorithm was used to estimate the location and number of change-points, as

well as the values of the constant functions between change-points. The algorithm was applied
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to nitrogen oxides (NO2 and NO) and carbon monoxide (CO) data from the city of Leeds in

the United Kingdom. The present work differ from that of Gyarmati-Szabó et al. (2010) when

we consider a non-homogeneous Poisson model with a Weibull rate function and change-points

and use the algorithm to estimate the parameters of this rate function, as well as the number

and locations of the change-points. The algorithm is an adaptation of that given by Green

(1995) and that given by Álvarez et al. (2006) where instead of proposing new parameters us-

ing functions of the parameters present in the model at a given iteration, we propose them by

generating directly from appropriate distributions. That simplifies the form of the acceptance

probabilities.

This work is organised as follows. In Section 2, we present the mathematical and the

Bayesian formulations of the model. Section 3 gives the description of the reversible-jump

MCMC algorithm. In Section 4 the model and algorithm are applied to Mexico City ozone,

PM10 and PM2.5 measurements. Section 5 presents a discussion of the results and in Section

6 we conclude. In an appendix, placed after the section References, some plots and additional

information used in the main text are given.

2 The mathematical and Bayesian models

Denote by [0, T ] (T > 0) the observational period where measurements were taken. Let Nt ≥ 0

be the random variable recording the number of times that a pollutant’s concentration exceeds

its corresponding environmental threshold L (L > 0) in the time interval [0, t), t ≥ 0. Assume

that there are K ≥ 0 days in which exceedances occurred during [0, T ], denote by d1, d2, . . . , dK

these exceedances days, and by D = {d1, d2, . . . , dK} the observed data. Let N = {Nt : t ≥ 0}

be a non-homogeneous Poisson process with rate and mean functions λ(t) > 0 and m(t) =∫ t
0
λ(s) ds, t ≥ 0, respectively. We take λ(·) of the Weibull form, i.e., λ(t) = (α/σ) (t/σ)α−1

where m(t) = (t/σ)α is the associated mean function, t ≥ 0; α, σ > 0.

Remark. The Weibull rate function is chosen over other possibilities because depending on

the value of the parameter α, the function λ(·) may present either a decreasing, a constant or

an increasing behaviour in addition to the fact that this rate function has a simple form and

3



the analysis is made easier.

For M ≥ 0 a known and fixed natural number, let I ∈ S = {0, 1, . . . ,M} be the number of

change-points present in the model and denote them by τ1, τ2, . . . , τI . If I = 0, then no change-

points are present. The variables I and τi, i = 1, 2, . . . , I are considered parameters that need to

be estimated. Take τ0 = 0 and τI+1 = T . Let λi(t) denote the rate function between the change-

points τi−1 and τi, i = 1, 2, . . . , I + 1, i.e., λi(t) = (αi/σi)(t/σi)
αi−1 with mi(t) = (t/σi)

αi the

corresponding mean function where αi and σi are parameters that also need to be estimated,

i = 1, 2, . . . , I + 1. Thus, in the case of multiple change-points, the vector of parameters

is φ = (I, τ ,θ), where τ = (τ1, τ2, . . . , τI) and θ = (θ1,θ2, . . . ,θI+1), with θi = (αi, σi),

i = 1, 2, . . . , I + 1. If I = 0, then the vector of parameters simplifies to φ = θ = (α, σ). We

assume that given τ and I, the parameters α1, . . . , αI+1, , σ1, . . . , σI+1 are independent a priori

and that given I, τ depends a priori only on I. Hence, given that we have I change-points, the

vector φ is an element of the state space CI = {I} × RI
+ × RI+1

+ × RI+1
+ = {I} × R3I+2

+ , I ≥ 1.

When I = 0, the state space simplifies to C0 = {0} × R+ × R+ = {0} × R2
+. These subspaces

belong to the general space C = ∪MI=0CI .

We follow the Bayesian point of view to estimate the parameters present in the model

(Gamerman and Lopes, 2000). Hence, we use the fact that for P (θ |D) and P (θ), respectively,

the prior and posterior distributions of the vector of parameters θ of a model describing D,

and L(D |θ) the likelihood function, we have P (θ |D) ∝ L(D |θ)P (θ). In the present case,

the form of the posterior distribution is

P (φ |D) ∝ P (I, τ ,α,σ |D) = L(D | I, τ ,α,σ)P (α | τ , I)P (σ | τ , I)P (τ | I)P (I)

where P (α | τ , I), P (σ | τ , I), P (τ | I) and P (I) are the prior distributions of α, σ, τ and I,

respectively, given as follows.

Given τ and I, the parameters αi and σi will have gamma prior distributions Gamma(a1, a2)

and Gamma(b1, b2), respectively, with a1 and b1 the shape and a2 and b2 the scale parameters;

i = 1, 2, . . . , I + 1; as in Green (1995), Gyarmati-Szabó et al. (2010) and Ai (2012), τ will have

as prior distribution the distribution of the even labelled order statistics of (2 I+1) independent

points uniformly distributed in [0, T ] (see, for instance, Arnold et al., 2008). The number of
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change-points will have as its prior distribution a truncated Poisson defined on the set S with

parameter λ, i.e., P (I) ∝ (λI/I!) 1S(I), where 1A(x) = 1, if x ∈ A and is zero otherwise.

The hyperparameters a1, a2, b1, b2 and λ are considered known and will be specified when

the model is applied to the data. Estimation of the parameters will be performed using samples

drawn from the respective posterior distributions using a RJ-MCMC algorithm programmed

in R.

When the algorithm is in a version of the model with I ≥ 1 change-points, the likelihood

function is of the form (Yang and Kuo, 2001; Achcar et al., 2011)

L(D |φ) ∝

Nτ1∏
i=1

λ1(di)

 exp [−m1(τ1)] I∏
j=2

 Nτj∏
i=Nτj−1+1

λj(di)

 exp (−[mj(τj)−mj(τj−1)])

 (1)

 K∏
i=NτI+1

λI+1(di)

 exp (− [mI+1(T )−mI+1(τI)]) ,

with Nτi representing the number of exceedance days before the change-point τi, i = 1, 2, . . . , I.

When I = 0, expression (1) simplifies to L(D |θ) =
[∏K

i=1 λ(di)
]

exp [−m(T )] (Cox and Lewis,

1966; Lawless, 1982).

In order to estimate the number of change-points present in the model best describing the

behaviour of the data, we need to use some selection criteria. Besides using the sample generated

by the RJ-MCMC algorithm to obtain the mean and the mode of the distribution of the number

of change-points, we will also use the graphical criterion which assess the fit of the estimated to

the observed means, the Bayesian information criterion (BIC), the marginal likelihood function

(ML) - see for instance Raftery (1996) - the sum of the absolute difference (SAD) between

the accumulated observed and estimated means, and their plots. The BIC, ML and SAD are

defined as follows. The BIC is given by BIC = −2
∑n

i=1 log(L[D |θi)]+p log(n), where p is the

length of θi and n is the sample size - see, for example, Schwarz (1978) and Akaike (1977, 1978).

The smaller the value the more adequate is the model. The ML of Model l may be approached

by a Monte Carlo estimate, denoted by Vl, and given by V̂l = 1
M ′

∑M ′

i=1 L
(
D |θ(l)

i

)
where M ′
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is the size of the simulated Markov chain Monte Carlo sample and θ
(l)
i , i = 1, 2, . . . ,M ′, is the

sample generated when Model l is used. The model with the highest Vl is the chosen model.

The SAD is given by SAD =
∑

t |m(t)− m̂(t)|, with m̂(·) the estimated value of the observed

m(·) which in our case correspond, respectively, to the estimated mean function obtained using

the respective estimated parameters, and the accumulated observed mean. According to this

criterion the selected model is the one with the smallest SAD value.

3 A reversible-jump MCMC algorithm

In order to start the description of the algorithm, first define

bI = c min

{
1,
P (I + 1)

P (I)

}
and dI = c min

{
1,
P (I − 1)

P (I)

}
with c > 0 a constant such that bI + dI < 1 and P (·) the prior distribution of the number of

change-points. Note that since I ∈ {0, 1, 2, . . . ,M}, we have d0 = bM = 0. Additionally, by

definition the reversibility condition bI P (I) = dI+1 P (I + 1) is satisfied.

When we have I change-points, three types of moves may be proposed: either the increase

by one of the number of change-points (birth) with probability bI , the decrease by one of the

number of change-points (death) with probability dI , and change in the position of one of the

change-points (replacement) with probability rI = 1−bI−dI . The possible moves are described

as follows.

(a) Birth move: if a birth move is proposed, then

i. As in Green (1995), Gyarmati-Szabó et al. (2010) and Ai (2012), generate a new

τ ′ using a uniform distribution U(0, T ). This new change-point will belong to an

interval [τk−1, τk) for some k ∈ {1, 2, . . . , I+1} with probability one. Denote by τ ′ =

(τ ′1, τ
′
2, . . . , τ

′
I+1) the new vector of change-points where τ ′j = τj, j = 1, 2, . . . , k − 1,

τ ′k = τ ′, τ ′j = τj−1, j = k+ 1, k+ 2, . . . , I + 1, with the appropriate adaptation in the

case where either the first or the last subinterval is chosen.
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ii. With probability 1/2 choose either [τ ′k−1, τ
′
k) or [τ ′k, τ

′
k+1) to host the new α′ and

σ′ which are generated using their corresponding prior distributions. If [τ ′k−1, τ
′
k) is

selected, then relabel the coordinates of the new vector of parameters of the rate

function as follows: α′j = αj and σ′j = σj, j = 1, 2, . . . , k − 1, α′k = α′ and σ′k = σ′,

α′j = αj−1 and σ′j = σj−1, j = k+ 1, k+ 2, . . . , I + 2. Let α′ = (α′1, α
′
2, . . . , α

′
I+2) and

σ′ = (σ′1, σ
′
2, . . . , σ

′
I+2) be the rate functions new vector of parameters. In the case

[τ ′k, τ
′
k+1) is selected, the relabelling is made in a similar way.

Indicate by φ′ = (I + 1, τ ′,α′,σ′) the new overall proposed vector of parameters. In this

case the acceptance probability is

A(φ,φ′) = min

{
1,
L(D | I + 1, τ ′,α′,σ′)

L(D | I, τ ,α,σ)

P (α′ | τ ′, I + 1)

P (α | τ , I)

P (σ′ | τ ′, I + 1)

P (σ | τ , I)

P (τ ′ | I + 1)

P (τ | I)

P (I + 1)

P (I)

Q(φ′,φ)

Q(φ,φ′)
J

}
where J is the Jacobian of the transformation which is equal to one, with

P (τ ′ | I + 1)

P (τ | I)
=

(2I + 3) 2 (I + 1)

T 2

(τ ′ − τk−1) (τk − τ ′)
(τk − τk−1)

(see, for instance, Arnold et al., 1992; Green, 1995; Gyarmat et al., 2010; Ai, 2012), and

where Q(·, ·) is the proposal distribution which is such that

Q(φ′,φ)

Q(φ,φ′)
=

1

B

dI+1
1
I+1

bI
1
T

where B = (1−a)P (α′k | τ ′, I+ 1)P (σ′k | τ ′, I+ 1) +aP (α′k+1 | τ ′, I+ 1)P (σ′k+1 | τ ′, I+ 1)

with a = 0 if the newly generated α′ and σ′ are placed in the interval [τ ′k−1, τ
′
k) and is equal

to one if they are placed in the new (k + 1)th interval [τ ′k, τ
′
k+1), and P (· | τ ′, I + 1) and

P (· | τ , I) the corresponding prior distributions of the parameters of the rate functions.

(b) Death move: if a death move is proposed, then

i. Select an index k ∈ {1, 2, . . . , I} uniformly and remove τk. Denote by τ ′ = (τ ′1, τ
′
2, . . . ,

τ ′I−1) the new vector of change-points where τ ′j = τj, j = 1, 2, . . . , k − 1, τ ′j = τj+1,
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j = k, k+ 1, . . . , I − 1, with the appropriate adaptation in the case where either the

first or the last change-points is chosen.

ii. With probability 1/2 choose either αk and σk or αk+1 and σk+1 to be removed. If

αk and σk are removed, then the coordinates of the new vector of parameters of the

rate function are as follows: α′j = αj and σ′j = σj, j = 1, 2, . . . , k− 1, α′j = αj+1 and

σ′j = σj+1, j = k, k + 1, . . . , I. Let α′ = (α′1, α
′
2, . . . , α

′
I) and σ′ = (σ′1, σ

′
2, . . . , σ

′
I) be

the rate function new vector of parameters. If αk+1 and σk+1 are chosen, then the

relabelling is performed in a similar way.

Indicate by φ′ = (I − 1, τ ′,α′,σ′) the new overall proposed vector of parameters. The

acceptance probability of the present move is

A(φ,φ′) = min

{
1,
L(D | I − 1, τ ′,α′,σ′)

L(D | I, τ ,α,σ)

P (α′ | τ ′, I − 1)

P (α | τ , I)

P (σ′ | τ ′, I − 1)

P (σ | τ , I)

P (τ ′ | I − 1)

P (τ | I)

P (I − 1)

P (I)

Q(φ′,φ)

Q(φ,φ′)
J

}
where J is the Jacobian of the transformation which is equal to one, with

P (τ ′ | I − 1)

P (τ | I)
=

T 2

(2I + 1) 2 I

(τk+1 − τk−1)
(τk+1 − τk) (τk − τk−1)

(see, for instance, Arnold et al., 1992; Green, 1995; Gyarmat et al., 2010; Ai 2012), where

Q(·, ·) is the proposal distribution which is such that

Q(φ′,φ)

Q(φ,φ′)
= C

bI−1
1
T

dI
1
I

,

with C = (1− a)P (αk | τ , I)P (σk | τ , I) + aP (αk+1 | τ , I)P (σk+1 | τ , I) with a = 0 if the

deleted coordinates are αk and σk and is equal to one if the deleted coordinates are αk+1

and σk+1, with P (· | τ , I) and P (· | τ ′, I − 1) the corresponding prior distributions of the

parameters of the rate functions.

(c) Replacement move: if the replacement of one change-point, then

i. As in Green (1995), Gyarmati-Szabó et al. (2010) and Ai (2012), select an in-

dex k ∈ {1, 2, . . . , I} uniformly and generate a new τ ′ using a uniform distribution
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U(τk−1, τk+1). Denote by τ ′ = (τ ′1, τ
′
2, . . . , τ

′
I) the new vector of change-points where

τ ′j = τj, j = 1, 2, . . . , k − 1, τ ′k = τ ′, τ ′j = τj, j = k + 1, k + 2, . . . , I, with the

appropriate adaptation in the case where either the first or the last change-points is

chosen.

ii. Generate new α′ and σ′ using their corresponding prior distributions. With proba-

bility 1/2 choose either αk and σk or αk+1 and σk+1 to be replaced. If αk and σk are

chosen, then the coordinates of the new vector of parameters of the rate function

are as follows: α′j = αj and σ′j = σj, j = 1, 2, . . . , k − 1, α′k = α′ and σ′k = σ′,

α′j = αj and σ′j = σj, j = k + 1, k + 2, . . . , I + 1. Let α′ = (α′1, α
′
2, . . . , α

′
I+1) and

σ′ = (σ′1, σ
′
2, . . . , σ

′
I+1) be the rate function new vector of parameters. If αk+1 and

σk+1 are chosen, then the relabelling is performed in a similar way.

Indicate by φ′ = (I, τ ′,α′,σ′) the new overall vector of parameters. The acceptance

probability is of the present move is

A(φ,φ′) = min

{
1,
L(D | I, τ ′,α′,σ′)
L(D | I, τ ,α,σ)

P (α′ | τ ′, I)

P (α | τ , I)

P (σ′ | τ ′, I)

P (σ | τ , I)

P (τ ′ | I)

P (τ | I)

P (I)

P (I)

Q(φ′,φ)

Q(φ,φ′)
J

}
where J is the Jacobian of the transformation which is equal to one, with

P (τ ′ | I)

P (τ | I)
=

(τk+1 − τ ′k) (τ ′k − τk−1)
(τk+1 − τk) (τk − τk−1)

(see, for instance, Arnold et al., 1992; Green, 1995; Gyarmat et al., 2010; Ai, 2012), and

where Q(·, ·) is the proposal distribution which is such that

Q(φ′,φ)

Q(φ,φ′)
= D

1
τk−1−τk+1

1
τk−1−τk+1

rI
1
I

rI
1
I

where

D =
(1− a)P (αk | τ , I)P (σk | τ , I) + aP (αk+1 | τ , I)P (σk+1 | τ , I)

(1− a)P (α′k | τ ′, I)P (σ′k | τ ′, I) + aP (α′k+1 | τ ′, I)P (σ′k+1 | τ ′, I)

with a = 0 if the replaced coordinates are αk and σk and is one if αk+1 and σk+1 are

replaced, with P (· | τ ′, I) and P (· | τ , I) the corresponding prior distributions.

9



4 Application to the Mexico City data

The model and algorithm are applied to three sets of data obtained from the Mexico City

monitoring network (http://www.aire.cdmx.gob.mx). We consider ozone, PM10 and PM2.5

measurements. In all cases we take the Mexico City metropolitan area overall daily maximum

measurements (given in parts per million - ppm - in the case of ozone and in microgram per

cubic meter - µg/m3 - in the cases of PM10 and PM2.5). We have considered measurements

obtained from 01 January 1995 to 31 December 2019 in the cases of O3 and PM10 and from 01

January 2004 to 31 December 2019 in the case of PM2.5. That gives us 9131 ozone and PM10

observations and 5844 PM2.5 measurements. (The shorter length of the PM2.5 observational

period is due to the fact that PM2.5 started being systematically monitored only in mid-2003).

Minute by minute measurements are taken in each station of the monitoring network and

the hourly averaged result is reported every hour. The ozone daily maximum measurement in

a given station is the maximum of the hourly averaged results reported at that station. Ozone

overall daily maximum measurement for the metropolitan area is the maximum of all daily

maxima recorded in all stations of the monitoring network. In the cases of PM10 and PM2.5,

the daily measurements in a given station are the average results over the 24-hour period of

the corresponding pollutant at that station. The PM10 and PM2.5 overall daily maximum

measurements for the metropolitan area are the maxima of the daily averaged results for all

stations in the network. The thresholds considered are those specified by NOM (2014a, 2014b),

i.e., 0.095 ppm for ozone, 75 µg/m3 for PM10 and 45 µg/m3 for PM2.5. During the observed

period there were 6706, 5211 and 1028 ozone, PM10 and PM2.5 exceedances, respectively.

Different values of λ were considered as hyperparameters for the prior distribution of the

number of change-points I. Hence, in the case of ozone we take λ = 1, 1.5, 2; we have λ =

0.9, 1, 1.2 in the case of PM10 and λ = 0.9, 1.2, 1.5 in the case of PM2.5. In all cases we take

M = 8. Hence, the state space of the number of change-points I is S = {0, 1, 2, . . . , 8}. When

ozone data are considered, the hyperparameters of the prior distributions of the parameters α

are a1 = 177 and a2 = 1/180 and, in the cases of the parameters σ, are b1 = 30 and b2 = 1/32.

If we consider the PM10 data we have a1 = 3855.119, a2 = 1/4037.43, b1 = 60.885 and
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b2 = 1/56.40477. In the case of PM2.5 the hyperparameters are a1 = 989.0532, a2 = 1/1199.82,

b1 = 19.78535 and b2 = 1/16.15016. In all cases we take c = 0.5.

Remark. The values of the hyperparameters in the case of ozone were obtained from results

given in previous studies where subsets of the datasets considered here were used (Súarez-Sierra

et al. 2019; Rodrigues et al. 2019; Achcar et al. 2011). In the cases of and PM10 and PM2.5

we have used information provided by the model when one change-point was assumed.

4.1 Results

Estimation of the parameters were made using samples of size 40000 obtained from five chains

after a burn-in period of 20000 iterations taking every 10th generated values. In Table 1,

given in the Appendix A, we have the values of the BIC, ML and SAD for each model and

pollutant, and in Table 2, also in the Appendix A, we have the distribution of the numbers of

change-points, as well as their mean values estimated using the RJ-MCMC generated samples.

Additionally, in Figures 1 and 2, given in the Appendix B, we have, respectively, the plots of

the accumulated observed and estimated means and the plots of their absolute differences.

Looking at Table 1, we see that in the case of ozone, of the three criteria, two choose the

model with λ = 1 with two change-points. The third criterion selects the model with λ = 1.5

with one change-point. If we consider the results when the PM10 data are used, two criteria

choose the model with λ = 0.9 with eight change-points. The third criterion prefers the model

with λ = 1 and eight change-points. In the case of PM2.5 the model with λ = 1.5 is chosen by

two of the criteria. One of them prefers the model with three change-points and the other with

eight. The third criterion chooses the model with λ = 0.9 with eight change-points.

If wee look at the results given by Table 2, we see that the estimated means of the number

of change-points are 3 and 4 for all values of λ in the cases of ozone and PM10, respectively,

and if we consider the PM2.5 data, then we have that the estimated values are 4 in the cases of

λ = 0.9, 1.2 and it could be either 4 or 5 for λ = 1.5. The values of the modes coincide with the

estimated means in the cases of PM10 and PM2.5 and all values of λ, with the case of λ = 0.9

and PM10 closely followed by the model with three change-points. In the case of ozone, the
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estimated number of change-points using the mode is 2.

If we turn our attention to the plots in Figures 1 and 2, in the case of ozone (see top three

plots), the model with two change-points (continuous blue lines) provides the best fit for all

values of λ with the model with three change-points (continuous pink lines) and λ = 1.5 also

giving a good fit. If we consider the case of PM10 (see plots in the second row of the figures),

results are a little fuzzy. We may have that the model with either three (continuous pink lines)

or eight (dotted blue lines) change-points is suitable for all values of λ with the exception of

the case where λ = 1 in which the preferred model is the one with seven change-points (dashed

green line). Similar disperse results are found when we look at the third rows of the figures

where we have the plots when PM2.5 data are used. In this case we have that almost all models

have a good fit, with the exception of the case where λ = 0.9 in which case by looking at Figure

1, we have that the model with eight change-points (dotted blue line) does not provide a good

overall fit and in Figure 2, we have that the smallest difference could be given by the model

with either three (continuous pink lines) or four (dashed black lines).

Therefore, taking into to account the selection made using the different criteria and selecting

those preferred by more criteria and using parsimony, we may choose the model with λ = 1 with

two change-points in the case of ozone, the model with λ = 0.9 and three change-points when

we consider the PM10 data and, in the case of PM2.5, we could use the model with λ = 1.5 with

four change-points. The estimated values of the parameters in each chosen model are given in

Table 3 in the Appendix A.

Looking at Table 3 we see that the change-points were located in the years 2003 and 2009

in the case of ozone; one in 1995 and two in 2015 if we consider the PM10 measurements and

one in 2004 and 2011 and two in 2019 in the case of PM2.5. We see that the two last detected

change-points in the cases of PM10 and PM2.5 are very close to each other. We could not find a

real reason to why these change-points are so close to each other since in those periods of time

there were no major changes that would justify their proximity. Note that even though the

values of α in all cases are very close to each other, with the exception of the PM2.5 data when

we move from before to after the second change-point, they decrease as we move through the

change-points. That indicates that the speed at each exceedances occur decreases slightly from

12



change-point to change-point. In the case of PM2.5 the values of α restart to go from larger to

smaller once we go from before to after the third change-point. Hence, we return to the case

of a slowing down in the speed of occurrence of PM2.5 exceedances.

In order to see how the selected estimated rate functions behave, in Figure 3 given in the

Appendix B, we have their plots for all pollutants. Looking at Figure 3 we see that with the

exception of the plots associated with the PM2.5 (bottom plot), in spite of having close values

of α, when we move through the change-points, in the cases of ozone (top left plot) and PM10

(top right plot) we see that there are small but significant differences in the values of the rate

functions in the time intervals between change-points.

If we consider the selected models using the mode of the distribution of the number of

change-points, we see, by looking at Table 2, that the selected models are λ = 1.5 and two

change-points (with τ1 = 3259 and τ2 = 5312) in the case of ozone, λ = 0.9 and four change-

points in the cases of PM10 (with τ1 = 102, τ2 = 4188, τ3 = 7729 and τ4 = 7790) and PM2.5

(with τ1 = 103, τ2 = 2884, τ3 = 5670 and τ4 = 5775). In these cases the locations of the

change-points were in the years 2002 and 2009 in the case of ozone; one in 1995 and 2006 and

two in 2016 in the case of PM10; and one in 2004 and 2011 and two in 2019 if we consider

the PM2.5 data. Note that, with the exception of the case where the PM10 data are used in

which case an extra change-points located in the year 2006 is detected, the locations of the

change-points do not differ much from the ones obtained using the criteria considered here to

select the suitable model.

5 Discussion

When we compare the results obtained using the RJ-MCMC algorithm with the results pro-

duced by previous works where an empirical Bayes approach was used, we have the following.

In Súarez-Sierra et al. (2019, 2022) where we have an observational period ranging from 01

January 2004 to 31 August 2015 for all three pollutants, selected models were the model with

zero, one and three change-points when the ozone, PM10 and PM2.5 data were used, respec-

tively. The change-points locations were in the year 2011 in the case of PM10 and in the years

13



2005, 2008 and 2013 if we consider the PM2.5 data.

In the case of PM10 the RJ-MCMC algorithm detects two change-points (which could be

considered as only one due to their proximity and the lack of reasons for having a change in

the behaviour of the data) at the end of the observational period considered in Súarez-Sierra et

al. (2019), but it misses the one located in the year 2011. The other estimated change-points

given by the present algorithm are located outside that observational period.

When we consider the PM2.5 data the number of change-points differs when the empirical

Bayes approach and the RJ-MCMC algorithm are used. However, since the two last change-

points estimated by the RJ-MCMC algorithm are very close to each other, they could be

considered as just one. Even though their locations vary they are not that different when

we use both approaches. In the case of the estimated parameters α of the rate functions the

RJ-MCMC algorithm does not detect the increasing behaviour between the second and third

change-points as obtained in Súarez-Sierra et al. (2022).

When we compare the results related to the ozone data, we have that in Súarez-Sierra et

al. (2019) the empirical Bayes approach did not detect any change-points during the time span

ranging from 01 January 2004 to 31 August 2015. However, the RJ-MCMC algorithm has

detected two change-points during that time span.

In another time frame, consider the results given by Rodrigues et al. (2019) where ozone data

from 01 January 1995 to 31 December 2010 were used. In that work a spatial component was

considered and data from ten stations were taken into account. Estimation of the parameters

were also made using an empirical Bayes approach. In that work, two change-points were

detected for the data of all stations. They were located in the years 2001 and 2007 which differ

by only two years from those obtained using the RJ-MCMC algorithm.

Consider now the results given in Achcar et al. (2011). In that work ozone data obtained

from 01 January 1990 to 31 December 2005 were used. The selected model detected the

presence of one change-point whose location is in the year 2001. This coincides with the first

of the estimated change-points in Rodrigues et al. (2019) and it is not far away from the first

change-point obtained using the present algorithm.
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6 Conclusion

In the present work we have considered a reversible-jump MCMC algorithm to estimate the

parameters in a non-homogeneous Poisson model in the presence of change-points, as well

as their number and locations. The model and algorithm were applied to ozone, PM10 and

PM2.5 data from Mexico City. Several criteria were used to select the model that best fit each

dataset. Results were mixed. Models with two, three and four change-points were detected

when the ozone, PM10 and PM2.5 data were used, respectively. Note that even though some

of the selection criteria have chosen the model with eight change-points, looking at Table 2

(Appendix A) we see that this model was visited by the algorithm only a small proportion of

the iterations. Hence, the selection of this model by some of the criteria might be associated

with the large number of parameters.

Even though in all the previous works and in the present, the number and locations of the

change-points are more or less compatible, the difference lies in the values of the estimated

parameters of the rate functions. In a more localised time span, changes in the behaviour of

the rate function are detected, i.e., in some cases we have changes from increasing to decreasing

and vice-versa. However, when the global picture is used some subtleties are not reflected in

the results.

We would like to point out that in 2021 new regulations were published considering tighter

threshold for ozone, PM10 and PM2.5 (NOM 2021a, 2021b). In those regulations the threshold

for ozone changed to 0.09 ppm when the one hour average measurements are used. In the

cases of the 24-hour PM10 and PM2.5 averages, a stead decrease in the threshold values will be

applied until the stricter values established by the World Heath Organisation 2005 guidelines

for the year 2025 are reached.
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Appendix

In this appendix we present the tables with the results of the estimated values of the discrimi-

nation criteria and estimated parameters of the selected model for each dataset. We also give

the plots related to the mean and rate functions of the selected models.

A. Tables

In this section we present the tables with the values of the BIC, ML and SAD for all models and

datasets. We also give the table with the estimated distribution probability of the number of

change-points, as well as the estimated mean obtained using the RJ-MCMC algorithm generated

samples for all models and datasets. Finally, we present the table with the estimated parameters

for the selected model when each dataset is considered.
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Table 1: BIC, ML and SAD values for each model and pollutant. We use “–” to indicate the fact that

the model with the corresponding number of change-points either was not visited by the algorithm or

was visited an insignificant number of times.
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chpt 0 1 2 3 4 5 6 7 8 Mean
Ozone λ = 1 – 0.057 0.5288 0.1762 0.1562 0.0651 0.0141 0.0023 0.0003 3

λ = 1.5 – 0.0334 0.5851 0.1332 0.1612 0.0671 0.0165 0.0029 0.0006 3
λ = 2 – 0.0363 0.5423 0.1451 0.1334 0.0902 0.0392 0.0112 0.0023 3

PM10 λ = 0.9 – – – 0.379 0.384 0.171 0.053 0.011 0.002 4
λ = 1 – – – 0.282 0.382 0.222 0.082 0.026 0.006 4
λ = 1.2 – – – 0.226 0.374 0.255 0.108 0.031 0.006 4

PM2.5 λ = 0.9 – – – 0.328 0.415 0.196 0.05 0.01 0.001 4
λ = 1.2 – – – 0.229 0.397 0.255 0.092 0.023 0.004 4
λ = 1.5 – – – 0.172 0.364 0.289 0.129 0.037 0.009 4-5

Table 2: Distribution and mean of the number of change-points for each model and dataset estimated using

the values generated by the RJ-MCMC algorithm. We use “–” to indicate that the corresponding value either

was not part of that specific model or the value was of order smaller that 10−3.

Ozone PM10 PM2.5

Mean (SD) MC Error Mean (SD) MC Error Mean (SD) MC Error
α1 0.976 (1.4E-2) 1.16E-3 0.97 (1.4E-2) 5.5E-3 0.821 (2.1E-2) 3.4E-3
α2 0.9598 (1.8E-2) 1.57E-3 0.955 (1.5E-2) 2.4E-4 0.824 (2.6E-2) 2.7E-4
α3 0.943 (1.6E-2) 1.43E-3 0.953 (1.5E-2) 1.8E-3 0.825 (2.6E-2) 2.7E-4
α4 – – 0.933 (1.4E-2) 3.4E-3 0.824 (2.5E-2) 8.9E-4
α5 – – – – 0.806 (2E-2) 1.2E-3
σ1 0.9199 (0.101) 8.38E-3 0.999 (8.7E-2) 3.2E-2 1.236 (0.192) 3.2E-2
σ2 0.9297 (0.164) 1.51E-2 1.076 (0.138) 2.1E-3 1.221 (0.275) 2.8E-3
σ3 0.967 (0.166) 1.53E-2 1.133 (0.135) 1.7E-2 1.225 (0.273) 2.8E-3
σ4 – – 1.221 (0.124) 2.1E-2 1.224 (0.285) 1E-2
σ5 – – – – 1.335 (0.252) 1.8E-2
τ1 3241 (315.7) 20.59 102 (1.534) 0.545 103 (2.64) 0.328
τ2 5289 (241.9) 19.38 7439 (1127.42) 448.23 2880 (1258.87) 11.21
τ3 – – 7462 (1144.29) 458.08 5665 (59.41) 4.84
τ4 – – – – 5771 (50.07) 5.57

Table 3: Estimated means, standard deviations (indicated by SD) and MC Error of the parameters for each

selected model and dataset. We use “–” to indicate that the corresponding parameter was not part of that

specific model.

B. Figures

In the this appendix we present the plots of the accumulated observed and estimated means

when all pollutants, hyperparameters λ and number of change-points present in each version

of the non-homogeneous Poisson model are used. We also present the plots of their absolute

differences which indicate the places of the best fit to the observed means of each estimated

means. Additionally, the plots of the rate functions of the selected models are also given.

22



0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00
60

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_o

zo
ne

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00
60

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_o

zo
ne

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00
60

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_o

zo
ne

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_p

m
10

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_p

m
10

0 2000 4000 6000 8000

0
10

00
20

00
30

00
40

00
50

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_p

m
10

0 1000 2000 3000 4000 5000 6000

0
20

0
40

0
60

0
80

0
10

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_p

m
2.

5

0 1000 2000 3000 4000 5000 6000

0
20

0
40

0
60

0
80

0
10

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_p

m
2.

5

0 1000 2000 3000 4000 5000 6000

0
20

0
40

0
60

0
80

0
10

00

days

ac
c_

ob
s_

es
t_

m
ea

ns
_p

m
2.

5

Figure 1: Accumulated observed and estimated means in the case of ozone with λ = 1, 1.5, 2 (from left

to right, first row plots), PM10 with λ = 0.9, 1, 1.2 (from left to right, second row plots) and PM2.5 with

λ = 0.9, 1.2, 1.5 (from left to right, third row plots). Black continuous lines are the observed means,

green dotted light are the cases where one change-point is allowed, blue continuous lines represent the

cases with two change-points, pink continuous lines represent the cases where we have three change-

points, black dashed lines are the cases where we have four change-points, dashed grey lines are the

five change-points models, dashed red lines represent the cases with six change-points, dashed green

lines are the cases where we have seven change-points and the dotted blue lines represent the cases

with eight change-points.
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Figure 2: Absolute differences between the accumulated observed and estimated means in the case

of ozone with λ = 1, 1.5, 2 (from left to right, first row plots), PM10 with λ = 0.9, 1, 1.2 (from left

to right, second row plots) and PM2.5 with λ = 0.9, 1.2, 1.5 (from left to right, third plots). Black

continuous lines are the observed means, green dotted light are the cases where one change-point

is allowed, blue continuous lines represent the cases with two change-points, pink continuous lines

represent the cases where we have three change-points, black dashed lines are the cases where we have

four change-points, dashed grey lines are the five change-points models, dashed red lines represent the

cases with six change-points, dashed green lines are the cases where we have seven change-points and

the dotted blue lines represent the cases with eight change-points.
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Figure 3: Rate functions of the selected model for each pollutant. Black, red, green, blue and grey

lines correspond to the rate functions before de first change-point, between the first and second change-

points, between the second and third change-points, between the third and fourth change-points and

between the fourth and fifth change-points.
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